Patents by Inventor Lim Thiam Chye

Lim Thiam Chye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8709866
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: April 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Publication number: 20130330882
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 12, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 8531031
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Publication number: 20110233745
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 7977157
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: July 12, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Publication number: 20100151630
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Application
    Filed: March 1, 2010
    Publication date: June 17, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 7700406
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: April 20, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 7573136
    Abstract: A multidie semiconductor device assembly or package includes an interposer comprising a substrate with at least one receptacle therethrough. A plurality of semiconductor device components (e.g., semiconductor devices) may be assembled with the interposer. For example, at least one contact pad of a semiconductor device component adjacent to one surface of the interposer may be electrically connected to a corresponding contact pad of another semiconductor device component positioned adjacent to an opposite surface of the interposer. As another example, multiple semiconductor device components may be at least partially superimposed relative to one another and at least partially disposed within a receptacle of the interposer.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: August 11, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Setho Sing Fee, Tay Wuu Yean, Lim Thiam Chye
  • Patent number: 7528007
    Abstract: A method for assembling one or more semiconductor devices with an interposer includes positioning the one or more semiconductor devices within a receptacle that extends through the interposer, on a retention element that extends over at least a portion of the receptacle. Material may be introduced between at least a portion of an outer periphery of the one or more semiconductor devices and an inner periphery of the interposer to facilitate securing of the one or more semiconductor devices in place relative to the interposer. The retention element may be removed from the semiconductor devices. Once the one or more semiconductor devices are in place, they may be electrically connected to the interposer.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Steven W. Heppler, Leng Nam Yin, Keith Tan, Patrick Guay, Edmund Lua Koon Tian, Yap Kah Eng, Eric Tan Swee Seng
  • Publication number: 20080284000
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Application
    Filed: June 28, 2007
    Publication date: November 20, 2008
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Patent number: 7368810
    Abstract: Invertible microfeature device packages and associated methods for manufacture and use are disclosed. A package in accordance with one embodiment includes a microfeature device having a plurality of device contacts, and a conductive structure electrically connected to the contacts. The conductive structure can have first and second package contacts accessible for electrical coupling to at least one device external to the package, with the first package contacts accessible from a first direction and the second package contacts configured to receive solder balls and accessible from a second direction opposite the first. An encapsulant can be disposed adjacent to the microfeature device and the conductive structure and can have apertures aligned with the second package contacts to contain solder balls carried by the second package contacts.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: May 6, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Eric Tan Swee Seng, Lim Thiam Chye
  • Patent number: 7279780
    Abstract: A quad flat no-lead (QFN) grid array semiconductor package and method for making the same are provided. The package includes a semiconductor die and a lead frame having a plurality of conductive elements patterned in a grid-type array. A plurality of bond pads on the semiconductor die is coupled to the plurality of conductive elements, such as by wire bonding. The semiconductor die and at least a portion of the lead frame are encapsulated in an insulative material, leaving the conductive elements exposed along a bottom major surface of the package for subsequent electrical connection with higher-level packaging. Individual conductive lead elements, as well as the grid array pattern, are formed by wire bonding multiple bond pads to a single lead at different locations and subsequently severing the leads between the bonding locations to form multiple conductive elements from each individual lead.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye
  • Patent number: 7274095
    Abstract: A semiconductor device package interposer including a receptacle extending substantially therethrough. Methods for assembling the interposer with one or more semiconductor devices are also disclosed. A film may be secured to a bottom surface of the interposer so as to at least partially cover a bottom end of the receptacle. One or more semiconductor devices are positioned within the receptacle, on the film. Each semiconductor device within the receptacle may then be electrically connected to the interposer. An encapsulant material, which is introduced into the receptacle, extends at least between portions of the outer periphery of each semiconductor device within the receptacle and a peripheral edge of the receptacle. Upon curing, setting, or hardening, the encapsulant material retains each semiconductor device within the receptacle and maintains a lateral position of each semiconductor device with respect to the interposer. Semiconductor device packages and multi-chip modules are also disclosed.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Steven W. Heppler, Leng Nam Yin, Keith Tan, Patrick Guay, Edmund Lua Koon Tian, Yap Kah Eng, Eric Tan Swee Seng
  • Patent number: 7198980
    Abstract: A multidie semiconductor device (MDSCD) package includes a generally planar interposer comprising a substrate with a central receptacle, upper surface conductors, and outer connectors on the lower surface of the interposer. Conductive vias connect upper surface conductors with outer connectors. One or more semiconductor devices may be mounted in the receptacle and one or more other semiconductor devices mounted above and/or below the interposer and attached thereto. The package may be configured to have a footprint not significantly larger than the footprint of the largest device and/or a thickness not significantly greater than the combined thickness of included devices. Methods for assembling and encapsulating packages from multidie wafers and multi-interposer sheets or strips are disclosed. Methods for combining a plurality of packages into a single stacked package are disclosed.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: April 3, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Tongbi Jiang, Setho Sing Fee, Tay Wuu Yean, Lim Thiam Chye
  • Patent number: 7112876
    Abstract: An interposer includes a substantially planar substrate with a slot therethrough. The slot includes a laterally recessed area in only a portion of a periphery thereof at a location that exposes at least a portion of an active surface of the semiconductor die located between a bond pad and an outer periphery of the semiconductor die. The laterally recessed area may facilitate access to the bond pad by apparatus for forming, positioning, or securing intermediate conductive elements. The slot may be formed by forming a first, thin elongated slot through the interposer substrate, then widening a portion thereof. Alternatively, a first, small circular hole may be formed through the interposer substrate, and then an elongated slot having a width that exceeds the diameter of the small circular hole may be formed through the substrate at a location which is continuous with the small circular hole.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Tay Wuu Yean, Lim Thiam Chye
  • Patent number: 7109572
    Abstract: A quad flat no-lead (QFN) grid array semiconductor package and method for making the same is disclosed. The package includes a semiconductor die and a lead frame having a plurality of conductive elements patterned in a grid-type array. A plurality of bond pads on the semiconductor die is coupled to the plurality of conductive elements, such as by wire bonding. The semiconductor die and at least a portion of the lead frame are encapsulated in an insulative material, leaving the conductive elements exposed along a bottom major surface of the package for subsequent electrical connection with higher-level packaging. Individual conductive lead elements, as well as the grid array pattern, are formed by wire bonding multiple bond pads to a single lead at different locations and subsequently severing the leads between the bonding locations to form multiple conductive elements from each individual lead.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: September 19, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye
  • Patent number: 7075816
    Abstract: A quad flat no-lead (QFN) grid array semiconductor package and method for making the same is disclosed. The package includes a semiconductor die and a lead frame having a plurality of conductive elements patterned in a grid-type array. A plurality of bond pads on the semiconductor die is coupled to the plurality of conductive elements, such as by wire bonding. The semiconductor die and at least a portion of the lead frame are encapsulated in an insulative material, leaving the conductive elements exposed along a bottom major surface of the package for subsequent electrical connection with higher-level packaging. Individual conductive lead elements, as well as the grid array pattern, are formed by wire bonding multiple bond pads to a single lead at different locations and subsequently severing the leads between the bonding locations to form multiple conductive elements from each individual lead.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: July 11, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye
  • Patent number: 6967125
    Abstract: A quad flat no-lead (QFN) grid array semiconductor package and method for making the same is disclosed. The package includes a semiconductor die and a lead frame having a plurality of conductive elements patterned in a grid-type array. A plurality of bond pads on the semiconductor die is coupled to the plurality of conductive elements, such as by wire bonding. The semiconductor die and at least a portion of the lead frame are encapsulated in an insulative material, leaving the conductive elements exposed along a bottom major surface of the package for subsequent electrical connection with higher-level packaging. Individual conductive lead elements, as well as the grid array pattern, are formed by wire bonding multiple bond pads to a single lead at different locations and subsequently severing the lead between the bonding locations to form multiple conductive elements from each individual lead.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: November 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye
  • Patent number: 6951982
    Abstract: Various aspects of the invention provide microelectronic component assemblies, memory modules, computer systems, and methods of assembling microelectronic component assemblies. In one particular implementation, a microelectronic component assembly includes a non-leaded first package, a second package, and a plurality of electrical junctions. The first package has a confronting surface that includes an exposed back surface of a microelectronic component and exposed contact surfaces. The second package has a confronting surface that includes an exposed back surface of a microelectronic component and exposed contact surfaces of a number of leads. Each of the junctions couples one of the contacts to the contact surface of one of the leads. The electrical junctions may also physically support the packages with their respective confronting surfaces juxtaposed with but spaced from one another, defining a peripherally open fluid passage and enhancing thermal performance.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: October 4, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Lim Thiam Chye, Setho Sing Fee, Eric Tan Swee Seng
  • Patent number: 6951777
    Abstract: An interposer includes a substantially planar substrate with a slot formed therethrough. The slot includes a laterally recessed area formed in only a portion of a periphery thereof, which is positioned so as to expose at least a portion of an active surface of the semiconductor die located between a bond pad and an outer periphery of the semiconductor die. The laterally recessed area facilitates access to the bond pad by apparatus for forming, positioning, or securing intermediate conductive elements. The slot may be formed by forming a first, thin elongated slot through the interposer substrate, then widening a portion thereof. Alternatively, a first, small circular hole may be formed through the interposer substrate, then an elongated slot having a width that exceeds the diameter of the small circular hole may be formed through the substrate at a location which is continuous with the small circular hole.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: October 4, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Tay Wuu Yean, Lim Thiam Chye