Patents by Inventor Lin Xiao

Lin Xiao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8815398
    Abstract: A carbon nanotube film includes a plurality of first carbon nanotubes and a plurality of second carbon nanotubes. The first carbon nanotubes are orientated primarily along a same direction. The second carbon nanotubes have different orientations from that of the plurality of first carbon nanotubes. Each of at least one portion of the second carbon nanotubes contacts with at least two adjacent first carbon nanotubes.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: August 26, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Chen Feng, Lin Xiao, Zhuo Chen, Liang Liu, Shou-Shan Fan, Qun-Qing Li, Li Qian, Kai Liu, Yang Wei
  • Patent number: 8815397
    Abstract: A carbon nanotube film includes a plurality of carbon nanotube strings and one or more carbon nanotubes. The plurality of carbon nanotube strings are separately arranged and located side by side. Distances between adjacent carbon nanotube strings are changed when a force is applied. One or more carbon nanotubes are located between adjacent carbon nanotube strings.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: August 26, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Chen Feng, Lin Xiao, Zhuo Chen, Liang Liu, Shou-Shan Fan, Qun-Qing Li, Li Qian, Kai Liu, Yang Wei
  • Patent number: 8811633
    Abstract: A thermoacoustic device includes a carbon nanotube composite structure, a sound wave generator and a signal input device. The carbon nanotube composite structure includes a carbon nanotube structure and a matrix. The matrix is located on a surface of the carbon nanotube structure. The sound wave generator is located on a surface of the carbon nanotube composite structure and insulated from the carbon nanotube structure via the coating layer. The sound wave generator includes a carbon film. The signal input device is configured to input signals to the sound wave generator.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: August 19, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8811632
    Abstract: A thermoacoustic device includes a substrate, at least two sound wave generators and at least two signal input devices. The substrate has at least two surfaces. Each of the at least two sound wave generators is located on each of the at least two surfaces. At least one of the at least two sound wave generator includes a carbon film. The carbon film includes at least one carbon nanotube layer and at least one graphene layer stacked with each other. The at least two signal input devices are configured to input signals to the at least two sound wave generator separately.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 19, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8795461
    Abstract: A method for stretching a carbon nanotube film includes providing one or more carbon nanotube films and one or more elastic supporters, attaching at least one portion of the one or more carbon nanotube films to the one or more elastic supporters, and stretching the elastic supporters.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: August 5, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Chen Feng, Lin Xiao, Zhuo Chen, Liang Liu, Shou-Shan Fan, Qun-Qing Li, Li Qian, Kai Liu, Yang Wei
  • Patent number: 8767981
    Abstract: A thermoacoustic device includes a carbon nanotube composite structure, a sound wave generator and a signal input device. The carbon nanotube composite structure includes a carbon nanotube structure and a matrix. The matrix is located a surface of the carbon nanotube structure. The sound wave generator is located on a surface of the carbon nanotube composite structure and insulated from the carbon nanotube structure via the matrix. The sound wave generator includes a graphene layer including at least one graphene. The signal input device is configured to input signals to the sound wave generator.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: July 1, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8758635
    Abstract: The present disclosure relates to a method for making a thermoacoustic element. In the method, a graphene film is arranged on a metal substrate. A nonmetal substrate is stacked with the graphene film located on the metal substrate to form a laminate structure. The graphene film is sandwiched between the nonmetal substrate and the metal substrate. The metal substrate is removed from the stacked structure. A number of through-holes are formed in the nonmetal substrate. The graphene film is exposed through the plurality of through-holes.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: June 24, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8758540
    Abstract: A method for laying carbon nanotube film includes following steps. A carbon nanotube film is provided. The carbon nanotube film includes a number of carbon nanotube strings substantially parallel to each other and extending along a first direction. The carbon nanotube film is stretched along a second direction substantially perpendicular with the first direction to form a deformation along the second direction. The carbon nanotube film is placed on a surface of a substrate. The deformation along the second direction is kept.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: June 24, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Chen Feng, Lin Xiao, Zhuo Chen, Liang Liu, Shou-Shan Fan, Qun-Qing Li, Li Qian, Yang Wei
  • Publication number: 20140128463
    Abstract: Disclosed are amide compounds, preparation method and uses thereof, specifically, the compounds represented by formula I or pharmaceutically acceptable salts, wherein R1, R2, R3, R4, R5, Q, X and n are defined as in the description. Also disclosed are a method for preparing the compounds of formula I, a composition containing the compounds, and the uses of the same in the preparation of medicaments for regulating blood lipid and/or preventing gallstone. The compounds of formula I disclosed in the present invention have stability in vitro, good solubility in the pharmaceutical organic solvents and favorable bioavailability in animals.
    Type: Application
    Filed: June 25, 2012
    Publication date: May 8, 2014
    Applicants: China State Institute of Pharmaceutic Industry, Shanghai Institute of Pharmaceutical Industry
    Inventors: Zhenpeng Yu, Gouping Wang, Zhen Zhang, Minyu Liu, Xiaoling Huang, Ying Liu, Lin Xiao, Li Cai, Xuejun Wu, Yifang Deng, Mianli Pan, Renhai Chen, Shenrong Tang, Quanhai Liu
  • Patent number: 8634579
    Abstract: A thermoacoustic device includes a sound wave generator and a signal input device. The sound wave generator includes a graphene layer. The graphene layer includes at least one graphene. The signal input device inputs signals to the sound wave generator.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: January 21, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8626676
    Abstract: A technology is presented by which a learned mechanism is developed by solving a minimization problem by using regularized dual averaging methods to provide regularized stochastic learning and online optimization. An objective function sums a loss function of the learning task and a regularization term. The regularized dual averaging methods exploit the regularization structure in an online learning environment, in a manner that obtains desired regularization effects, e.g., sparsity under L1-regularization.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: January 7, 2014
    Assignee: Microsoft Corporation
    Inventor: Lin Xiao
  • Patent number: 8625822
    Abstract: A thermoacoustic device includes a substrate, a sound wave generator and a signal device. The substrate has a net structure and includes a number of first wires and a number of second wires. The first wires and the second wires are crossed with each other. Each of the first wires includes a composite wire. The composite wire includes a carbon nanotube wire structure and a coating layer wrapping the carbon nanotube wire structure. The sound wave generator is located on a surface of the substrate and includes a graphene layer including at least one graphene. The signal input device is configured to input signals to the sound wave generator.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: January 7, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8597526
    Abstract: A method for making a graphene/carbon nanotube composite structure includes providing a metal substrate including a first surface and a second surface opposite to the first surface, growing a graphene film on the first surface of the metal substrate by a CVD method, providing at least one carbon nanotube film structure on the graphene film, and combining the at least one carbon nanotube film structure with the graphene film, coating a polymer layer on the at least one carbon nanotube film structure, and combining the polymer layer with the at least one carbon nanotube film structure and the graphene film, and forming a plurality of stripped electrodes by etching the metal substrate from the second surface.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: December 3, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8452031
    Abstract: An ultrasonic acoustic device includes a carbon nanotube structure. The carbon nanotube structure is capable of causing a thermoacoustic effect and generating ultrasonic sound wave in liquid medium.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: May 28, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Yuan Chao Yang, Zhuo Chen, Lin Xiao, Shou-Shan Fan
  • Publication number: 20130062001
    Abstract: A method for laying carbon nanotube film includes following steps. A carbon nanotube film is provided. The carbon nanotube film includes a number of carbon nanotube strings substantially parallel to each other and extending along a first direction. The carbon nanotube film is stretched along a second direction substantially perpendicular with the first direction to form a deformation along the second direction. The carbon nanotube film is placed on a surface of a substrate. The deformation along the second direction is kept.
    Type: Application
    Filed: October 29, 2012
    Publication date: March 14, 2013
    Inventors: KAI-LI JIANG, CHEN FENG, LIN XIAO, ZHUO CHEN, LIANG LIU, SHOU-SHAN FAN, QUN-QING LI, LI QIAN, YANG WEI
  • Publication number: 20120324088
    Abstract: A multi-service node management system includes: at least two service nodes, where each of the service node is disposed with a baseboard management controller (BMC); a module management controller (MMC), having one end configured to perform data communication with the BMC in each service node of the at least two service nodes, and the other end performing data communication with a shared module; and the shared module, on which sharing management is performed by BMCs in the service nodes through an MMC.
    Type: Application
    Filed: August 24, 2012
    Publication date: December 20, 2012
    Inventors: Jianjun Zhou, Zhan Wu, Lin Xiao
  • Patent number: 8334974
    Abstract: A method for detecting polarizing direction of electromagnetic wave includes disposing a carbon nanotube structure in a vacuum environment, irradiating a surface of the carbon nanotube structure by an electromagnetic wave with a polarizing direction while rotating the carbon nanotube structure, and determining the polarizing direction of the electromagnetic wave according to change of the visible light emitted from the carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes arranged along a substantially same direction. The carbon nanotube structure can absorb the electromagnetic wave and emit a visible light. The rotating axis is substantially perpendicular to the surface of the carbon nanotube structure irradiated by the electromagnetic wave.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: December 18, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Lin Xiao, Yu-Ying Zhang, Kai-Li Jiang, Liang Liu, Shou-Shan Fan
  • Patent number: 8331586
    Abstract: A thermoacoustic device includes a substrate, at least one first electrode, at least one second electrode and a sound wave generator. The at least one first electrode and the at least one second electrode are disposed on the substrate. The sound wave generator is contacting with the at least one first electrode and the at least one second electrode. The sound wave generator is suspended on the substrate via the first electrode and the second electrode. The sound wave generator includes a carbon nanotube structure.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: December 11, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Lin Xiao, Zhuo Chen, Chen Feng, Liang Liu, Peng Liu, Li Qian, Qun-Qing Li, Shou-Shan Fan
  • Publication number: 20120298620
    Abstract: A method for making a graphene composite structure includes providing a metal substrate including a first surface and a second surface opposite to the first surface, growing a graphene film on the first surface of the metal substrate by a CVD method, providing a polymer layer on the graphene film and combining the polymer layer with the graphene film, and forming a plurality of stripped electrodes by etching the metal substrate from the second surface.
    Type: Application
    Filed: November 23, 2011
    Publication date: November 29, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: KAI-LI JIANG, XIAO-YANG LIN, LIN XIAO, SHOU-SHAN FAN
  • Publication number: 20120298623
    Abstract: The present disclosure relates to a method for making a thermoacoustic element. In the method, a graphene film is arranged on a metal substrate. A nonmetal substrate is stacked with the graphene film located on the metal substrate to form a laminate structure. The graphene film is sandwiched between the nonmetal substrate and the metal substrate. The metal substrate is removed from the stacked structure. A number of through-holes are formed in the nonmetal substrate. The graphene film is exposed through the plurality of through-holes.
    Type: Application
    Filed: November 23, 2011
    Publication date: November 29, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: KAI-LI JIANG, XIAO-YANG LIN, LIN XIAO, SHOU-SHAN FAN