Patents by Inventor Ling-Yen Yeh

Ling-Yen Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10269791
    Abstract: A transistor that is formed with a transition metal dichalcogenide material is provided. The transition metal dichalcogenide material is formed using a direct deposition process and patterned into one or more fins. A gate dielectric and a gate electrode are formed over the one or more fins. Alternatively, the transition metal dichalcogenide material may be formed using a deposition of a non-transition metal dichalcogenide material followed by a treatment to form a transition metal dichalcogenide material. Additionally, fins that utilized the transition metal dichalcogenide material may be formed with sidewalls that are either perpendicular to a substrate or else are sloped relative to the substrate.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Ling-Yen Yeh, Yuan-Chen Sun
  • Publication number: 20190096767
    Abstract: In a method of manufacturing a circuit including a MOSFET disposed in a MOSFET region and a negative capacitance FET (NCFET) disposed in a NCFET region, a dielectric layer is formed over a channel layer in the MOSFET region and the NCFET region. A first metallic layer is formed over the dielectric layer in the MOSFET region and the NCFET region. After the first metallic layer is formed, an annealing operation is performed only in the NCFET region. After the annealing operation, the first metallic layer is removed from the MOSFET region and the NCFET region. The annealing operation includes irradiating the first metallic layer and the dielectric layer in the NCFET region with an energy beam.
    Type: Application
    Filed: January 30, 2018
    Publication date: March 28, 2019
    Inventors: Ling-Yen YEH, Carlos H. DIAZ, Wilman TSAI
  • Publication number: 20190088760
    Abstract: A semiconductor device includes a first potential supply line for supplying a first potential, a second potential supply line for supplying a second potential lower than the first potential, a functional circuit, and at least one of a first switch disposed between the first potential supply line and the functional circuit and a second switch disposed between the second potential supply line and the functional circuit. The first switch and the second switch are negative capacitance FET.
    Type: Application
    Filed: September 18, 2017
    Publication date: March 21, 2019
    Inventors: Chien-Hsing LEE, Chih-Sheng CHANG, Wilman TSAI, Chia-Wen CHANG, Ling-Yen YEH, Carlos H. DIAZ
  • Publication number: 20190088757
    Abstract: A method and structure for providing a GAA device. In some embodiments, a substrate including an insulating layer disposed thereon is provided. By way of example, a first metal portion is formed within the insulating layer. In various embodiments, a first lateral surface of the first metal portion is exposed. After exposure of the first lateral surface of the first metal portion, a first graphene layer is formed on the exposed first lateral surface. In some embodiments, the first graphene layer defines a first vertical plane parallel to the exposed first lateral surface. Thereafter, in some embodiments, a first nanobar is formed on the first graphene layer, where the first nanobar extends in a first direction normal to the first vertical plane defined by the first graphene layer.
    Type: Application
    Filed: November 19, 2018
    Publication date: March 21, 2019
    Inventors: Che-Wei Yang, Chi-Wen Liu, Hao-Hsiung Lin, Ling-Yen Yeh
  • Publication number: 20190067488
    Abstract: In a method of manufacturing a negative capacitance structure, a ferroelectric dielectric layer is formed over a first conductive layer disposed over a substrate, and a second conductive layer is formed over the ferroelectric dielectric layer. The ferroelectric dielectric layer includes an amorphous layer and crystals.
    Type: Application
    Filed: February 28, 2018
    Publication date: February 28, 2019
    Inventors: Wilman TSAI, Ling-Yen YEH
  • Patent number: 10186602
    Abstract: The disclosure relates to a fin field effect transistor (FinFET). An exemplary FinFET comprises a substrate comprising a major surface; a fin structure protruding from the major surface comprising an upper portion comprising a first semiconductor material having a first lattice constant, wherein the upper portion comprises a first substantially vertical portion having a first width and a second substantially vertical portion having a second width less than the first width over the first substantially vertical portion; and a lower portion comprising a second semiconductor material having a second lattice constant less than the first lattice constant, wherein a top surface of the lower portion has a third width less than the first width; and a gate structure covering the second substantially vertical portion.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: January 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yen-Yu Chen, Hung-Yao Chen, Chi-Yuan Shih, Ling-Yen Yeh, Clement Hsingjen Wann
  • Patent number: 10164070
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 10164033
    Abstract: A semiconductor device includes a fin having a first semiconductor material. The fin includes a source/drain (S/D) region and a channel region. The S/D region provides a top surface and two sidewall surfaces. A width of the S/D region is smaller than a width of the channel region. The semiconductor device further includes a semiconductor film over the S/D region and having a doped second semiconductor material that is different from the first semiconductor material. The semiconductor film provides a top surface and two sidewall surfaces over the top and two sidewall surfaces of the S/D region respectively. The semiconductor device further includes a metal contact over the top and two sidewall surfaces of the semiconductor film and operable to electrically communicate with the S/D region.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: December 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yee-Chia Yeo, Carlos H. Diaz, Chih-Hao Wang, Ling-Yen Yeh, Yuan-Chen Sun
  • Patent number: 10164016
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a fin active region formed on a semiconductor substrate and spanning between a first sidewall of a first shallow trench isolation (STI) feature and a second sidewall of a second STI feature; an anti-punch through (APT) feature of a first type conductivity; and a channel material layer of the first type conductivity, disposed on the APT feature and having a second doping concentration less than the first doping concentration.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: December 25, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Yi Peng, Ling-Yen Yeh, Chi-Wen Liu, Chih-Sheng Chang, Yee-Chia Yeo
  • Publication number: 20180350800
    Abstract: A semiconductor device includes a first channel region disposed over a substrate, and a first gate structure disposed over the first channel region. The first gate structure includes a gate dielectric layer disposed over the channel region, a lower conductive gate layer disposed over the gate dielectric layer, a ferroelectric material layer disposed over the lower conductive gate layer, and an upper conductive gate layer disposed over the ferroelectric material layer. The ferroelectric material layer is in direct contact with the gate dielectric layer and the lower gate conductive layer, and has a U-shape cross section.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 6, 2018
    Inventors: Chia-Wen CHANG, Hong-Nien LIN, Chien-Hsing LEE, Chih-Sheng CHANG, Ling-Yen YEH, Wilman TSAI, Yee-Chia YEO
  • Publication number: 20180350806
    Abstract: A transistor that is formed with a transition metal dichalcogenide material is provided. The transition metal dichalcogenide material is formed using a direct deposition process and patterned into one or more fins. A gate dielectric and a gate electrode are formed over the one or more fins. Alternatively, the transition metal dichalcogenide material may be formed using a deposition of a non-transition metal dichalcogenide material followed by a treatment to form a transition metal dichalcogenide material. Additionally, fins that utilized the transition metal dichalcogenide material may be formed with sidewalls that are either perpendicular to a substrate or else are sloped relative to the substrate.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 6, 2018
    Inventors: Yee-Chia Yeo, Ling-Yen Yeh, Yuan-Chen Sun
  • Patent number: 10141454
    Abstract: Various transistors, such as field-effect transistors, and methods of fabricating the transistors are disclosed herein. An exemplary transistor includes a phosphorene-containing layer having a channel region, a source region, and a drain region defined therein. A passivation layer is disposed over the phosphorene-containing layer. A source contact and a drain contact extend through the passivation layer, such that the source contact and the drain contact are respectively coupled with the source region and the drain region. A gate stack is disposed over the channel region. In some embodiments, the gate stack includes a gate dielectric layer and a gate electrode layer, where the gate dielectric layer extends through the passivation layer and contacts the channel region. In some embodiments, the gate stack includes a gate electrode layer disposed over the passivation layer, and a portion of the passivation layer serves as a gate dielectric layer of the gate stack.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: November 27, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Yee-Chia Yeo, Ling-Yen Yeh
  • Patent number: 10134865
    Abstract: A method and structure for providing a GAA device. In some embodiments, a substrate including an insulating layer disposed thereon is provided. By way of example, a first metal portion is formed within the insulating layer. In various embodiments, a first lateral surface of the first metal portion is exposed. After exposure of the first lateral surface of the first metal portion, a first graphene layer is formed on the exposed first lateral surface. In some embodiments, the first graphene layer defines a first vertical plane parallel to the exposed first lateral surface. Thereafter, in some embodiments, a first nanobar is formed on the first graphene layer, where the first nanobar extends in a first direction normal to the first vertical plane defined by the first graphene layer.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Wei Yang, Chi-Wen Liu, Hao-Hsiung Lin, Ling-Yen Yeh
  • Patent number: 10115597
    Abstract: A device having an epitaxial region and dual metal-semiconductor alloy surfaces is provided. The epitaxial region includes an upward facing facet and a downward facing facet. The upward facing facet has a first metal-semiconductor alloy surface and the downward facing facet has a second metal-semiconductor alloy surface, wherein the first metal-semiconductor alloy is different than the second metal-semiconductor alloy.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Chi-Yuan Shih, Gin-Chen Huang, Clement Hsingjen Wann, Li-Chi Yu, Chin-Hsiang Lin, Ling-Yen Yeh, Meng-Chun Chang, Neng-Kuo Chen, Sey-Ping Sun, Ta-Chun Ma, Yen-Chun Huang
  • Publication number: 20180308955
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 10056498
    Abstract: A semiconductor device including a field effect transistor (FET) device includes a substrate and a channel structure formed of a two-dimensional (2D) material. An interfacial layer is formed on the channel structure. A gate stack including a gate electrode layer and a gate dielectric layer is formed over the interfacial layer. Source and drain contacts are formed over openings in the interfacial layer. The source and drain contacts have a side contact with the interfacial layer and a side contact and a surface contact with the channel structure.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: August 21, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ling-Yen Yeh, Chih-Sheng Chang, Wilman Tsai, Yu-Ming Lin
  • Patent number: 10043908
    Abstract: The disclosure relates to a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface and a cavity below the major surface; a strained material in the cavity, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; a Ge-containing dielectric layer over the strained material; and a metal layer over the Ge-containing dielectric layer.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: August 7, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Yen-Yu Chen
  • Patent number: 10032889
    Abstract: A method includes forming a semiconductor fin, performing a first passivation step on a top surface of the semiconductor fin using a first passivation species, and performing a second passivation step on sidewalls of the semiconductor fin using a second passivation species different from the first passivation species. A gate stack is formed on a middle portion of the semiconductor fin. A source or a drain region is formed on a side of the gate stack, wherein the source or drain region and the gate stack form a Fin Field-Effect Transistor (FinFET).
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: July 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20180204956
    Abstract: Various transistors, such as field-effect transistors, and methods of fabricating the transistors are disclosed herein. An exemplary transistor includes a phosphorene-containing layer having a channel region, a source region, and a drain region defined therein. A passivation layer is disposed over the phosphorene-containing layer. A source contact and a drain contact extend through the passivation layer, such that the source contact and the drain contact are respectively coupled with the source region and the drain region. A gate stack is disposed over the channel region. In some embodiments, the gate stack includes a gate dielectric layer and a gate electrode layer, where the gate dielectric layer extends through the passivation layer and contacts the channel region. In some embodiments, the gate stack includes a gate electrode layer disposed over the passivation layer, and a portion of the passivation layer serves as a gate dielectric layer of the gate stack.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: Yee-Chia Yeo, Ling-Yen Yeh
  • Publication number: 20180190833
    Abstract: A semiconductor device including a field effect transistor (FET) device includes a substrate and a channel structure formed of a two-dimensional (2D) material. An interfacial layer is formed on the channel structure. A gate stack including a gate electrode layer and a gate dielectric layer is formed over the interfacial layer. Source and drain contacts are formed over openings in the interfacial layer. The source and drain contacts have a side contact with the interfacial layer and a side contact and a surface contact with the channel structure.
    Type: Application
    Filed: February 27, 2018
    Publication date: July 5, 2018
    Inventors: Ling-Yen YEH, Chih-Sheng CHANG, Wilman TSAI, Yu-Ming LIN