Patents by Inventor Ling-Yen Yeh

Ling-Yen Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8946829
    Abstract: A semiconductor apparatus includes fin field-effect transistor (FinFETs) having shaped fins and regular fins. Shaped fins have top portions that may be smaller, larger, thinner, or shorter than top portions of regular fins. The bottom portions of shaped fins and regular fins are the same. FinFETs may have only one or more shaped fins, one or more regular fins, or a mixture of shaped fins and regular fins. A semiconductor manufacturing process to shape one fin includes forming a photolithographic opening of one fin, optionally doping a portion of the fin, and etching a portion of the fin.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Yi-Tang Lin, Chih-Sheng Chang, Chi-Wen Liu
  • Publication number: 20140147943
    Abstract: A method includes probing at least one semiconductor fin using a four-point probe head, with four probe pins of the four-point probe head contacting the at least one semiconductor fin. A resistance of the at least one semiconductor fin is calculated. A carrier concentration of the semiconductor fin is calculated from the resistance.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Clement Hsingjen Wann, Yasutoshi Okuno, Ling-Yen Yeh, Chi-Yuan Shih, Yuan-Fu Shao, Wei-Chun Tsai
  • Publication number: 20140042500
    Abstract: The disclosure relates to a semiconductor device. An exemplary structure for a contact structure for a semiconductor device comprises a substrate comprising a major surface and a cavity below the major surface; a strained material in the cavity, wherein a lattice constant of the strained material is different from a lattice constant of the substrate; a Ge-containing dielectric layer over the strained material; and a metal layer over the Ge-containing dielectric layer.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Yen-Yu Chen
  • Publication number: 20130221491
    Abstract: A semiconductor apparatus includes fin field-effect transistor (FinFETs) having controlled fin heights. The apparatus includes a high fin density area and a low fin density area. Each fin density area includes fins and dielectric material between the fins. The dielectric material includes different dopant concentrations for different fin density areas and is the same material as deposited.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Yuan-Fu Shao, Wen-Huei Guo, Tung Ying Lee
  • Publication number: 20130119482
    Abstract: The disclosure relates to a Fin field effect transistor (FinFET). An exemplary structure for a FinFET comprises a substrate comprising a top surface; a first fin and a second fin extending above the substrate top surface, wherein each of the fins has a top surface and sidewalls; an insulation layer between the first and second fins extending part way up the fins from the substrate top surface; a first gate dielectric covering the top surface and sidewalls of the first fin having a first thickness and a second gate dielectric covering the top surface and sidewalls of the second fin having a second thickness less than the first thickness; and a conductive gate strip traversing over both the first gate dielectric and second gate dielectric.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Clement Hsingjen WANN, Ling-Yen YEH, Chi-Yuan SHIH, Yi-Tang LIN, Chih-Sheng CHANG
  • Publication number: 20130093026
    Abstract: A semiconductor apparatus includes fin field-effect transistor (FinFETs) having shaped fins and regular fins. Shaped fins have top portions that may be smaller, larger, thinner, or shorter than top portions of regular fins. The bottom portions of shaped fins and regular fins are the same. FinFETs may have only one or more shaped fins, one or more regular fins, or a mixture of shaped fins and regular fins. A semiconductor manufacturing process to shape one fin includes forming a photolithographic opening of one fin, optionally doping a portion of the fin, and etching a portion of the fin.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 18, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Clement Hsingjen WANN, Ling-Yen YEH, Chi-Yuan SHIH, Yi-Tang LIN, Chih-Sheng CHANG, Chi-Wen LIU
  • Patent number: 8168501
    Abstract: A semiconductor device and method of manufacture thereof wherein a PMOS source/drain region of a transistor within the substrate includes a first strained layer in the PMOS source/drain region and a first capping layer in contact with the first strained layer. Further, the semiconductor device and method provide for an NMOS source/drain region of a transistor within the substrate including a second strained layer in the NMOS source/drain region and a second capping layer in contact with the second strained layer.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: May 1, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Hua Yu, Ling-Yen Yeh, Tze-Liang Lee
  • Publication number: 20110230022
    Abstract: A semiconductor device and method of manufacture thereof wherein a PMOS source/drain region of a transistor within the substrate includes a first strained layer in the PMOS source/drain region and a first capping layer in contact with the first strained layer. Further, the semiconductor device and method provide for an NMOS source/drain region of a transistor within the substrate including a second strained layer in the NMOS source/drain region and a second capping layer in contact with the second strained layer.
    Type: Application
    Filed: May 27, 2011
    Publication date: September 22, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hua Yu, Ling-Yen Yeh, Tze-Liang Lee
  • Patent number: 7973337
    Abstract: A semiconductor device and method of manufacture thereof wherein a PMOS source/drain region of a transistor within the substrate includes a first strained layer in the PMOS source/drain region and a first capping layer in contact with the first strained layer. Further, the semiconductor device and method provide for an NMOS source/drain region of a transistor within the substrate including a second strained layer in the NMOS source/drain region and a second capping layer in contact with the second strained layer.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: July 5, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hua Yu, Ling-Yen Yeh, Tze-Liang Lee
  • Patent number: 7851328
    Abstract: A method of manufacturing a semiconductor structure is provided. The method includes forming a hard mask pattern on a semiconductor substrate, wherein the hard mask pattern covers active regions; forming a trench in the semiconductor substrate within an opening defined by the hard mask pattern; filling the trench with a dielectric material, resulting in a trench isolation feature; performing an ion implantation to the trench isolation feature using the hard mask pattern to protect active regions of the semiconductor substrate; and removing the hard mask pattern after the performing of the ion implantation.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 14, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Han Liao, Tze-Liang Lee, Ling-Yen Yeh, Mong-Song Liang
  • Publication number: 20100289086
    Abstract: A semiconductor device and method of manufacture thereof wherein a PMOS source/drain region of a transistor within the substrate includes a first strained layer in the PMOS source/drain region and a first capping layer in contact with the first strained layer. Further, the semiconductor device and method provide for an NMOS source/drain region of a transistor within the substrate including a second strained layer in the NMOS source/drain region and a second capping layer in contact with the second strained layer.
    Type: Application
    Filed: July 28, 2010
    Publication date: November 18, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hua Yu, Ling-Yen Yeh, Tze-Liang Lee
  • Patent number: 7781799
    Abstract: A semiconductor device and method of manufacture thereof wherein a PMOS source/drain region of a transistor within the substrate includes a first strained layer in the PMOS source/drain region and a first capping layer in contact with the first strained layer. Further, the semiconductor device and method provide for an NMOS source/drain region of a transistor within the substrate including a second strained layer in the NMOS source/drain region and a second capping layer in contact with the second strained layer.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: August 24, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Hua Yu, Ling-Yen Yeh, Tze-Liang Lee
  • Publication number: 20100075480
    Abstract: A method of manufacturing a semiconductor structure is provided. The method includes forming a hard mask pattern on a semiconductor substrate, wherein the hard mask pattern covers active regions; forming a trench in the semiconductor substrate within an opening defined by the hard mask pattern; filling the trench with a dielectric material, resulting in a trench isolation feature; performing an ion implantation to the trench isolation feature using the hard mask pattern to protect active regions of the semiconductor substrate; and removing the hard mask pattern after the performing of the ion implantation.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 25, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Han Liao, Tze-Liang Lee, Ling-Yen Yeh, Mong-Song Liang
  • Patent number: 7579248
    Abstract: A method for improving uniformity of stressors of MOS devices is provided. The method includes forming a gate dielectric over a semiconductor substrate, forming a gate electrode on the gate dielectric, forming a spacer on respective sidewalls of the gate electrode and the gate dielectric, forming a recess in the semiconductor adjacent the spacer, and depositing SiGe in the recess to form a SiGe stressor. The method further includes etching the SiGe stressor to improve the uniformity of SiGe stressors.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: August 25, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Jim Huang, Ling-Yen Yeh, Hun-Jan Tao
  • Publication number: 20090108290
    Abstract: A semiconductor device and method of manufacture thereof wherein a PMOS source/drain region of a transistor within the substrate includes a first strained layer in the PMOS source/drain region and a first capping layer in contact with the first strained layer. Further, the semiconductor device and method provide for an NMOS source/drain region of a transistor within the substrate including a second strained layer in the NMOS source/drain region and a second capping layer in contact with the second strained layer.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 30, 2009
    Inventors: Ming-Hua Yu, Ling-Yen Yeh, Tze-Liang Lee
  • Publication number: 20080290420
    Abstract: A semiconductor structure includes a semiconductor substrate; an opening in the semiconductor substrate; a semiconductor layer in the opening and covering a bottom and sidewalls of the opening, wherein the semiconductor layer and the semiconductor substrate comprise different materials; and a dielectric material over the semiconductor layer and filling a remaining portion of the opening.
    Type: Application
    Filed: May 25, 2007
    Publication date: November 27, 2008
    Inventors: Ming-Hua Yu, Tai-Chun Huang, Chien-Hao Chen, Keh-Chiang Ku, Jr.-Hung Li, Ling-Yen Yeh, Tze-Liang Lee
  • Publication number: 20080138983
    Abstract: A method of forming tensile stress films for NFET Performance enhancement, comprising the steps of: (a) providing a semiconductor substrate having a gate structure patterned thereon; (b) performing a deposition process to form a first dielectric film overlying the semiconductor substrate and covering the gate structure; (c) performing a curing process on the first dielectric film; (d) successively repeating the step (b) of deposition process and the step (c) of curing process at least once to form at least one second dielectric film on the first dielectric film until the total thickness of the first dielectric film and the at least one second dielectric film reaches a target thickness.
    Type: Application
    Filed: December 6, 2006
    Publication date: June 12, 2008
    Inventors: Hao-Ming Lien, Jim Cy Huang, Donald Y. Chao, Ling-Yen Yeh, Hun-Jan Tao
  • Patent number: 7276417
    Abstract: A method for forming stressors in a semiconductor substrate is provided. The method includes providing a semiconductor substrate including a first device region and a second device region, forming shallow trench isolation (STI) regions with a high-shrinkage dielectric material in the first and the second device regions wherein the STI regions define a first active region in the first device region and a second active region in the second device region, forming an insulation mask over the STI region and the first active region in the first device region wherein the insulation mask does not extend over the second device region, and performing a stress-tuning treatment to the semiconductor substrate. The first active region and second active region have tensile stress and compressive stress respectively. An NMOS and a PMOS device are formed on the first and second active regions, respectively.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: October 2, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Ting Tseng, Yu-Lien Huang, Hao-Ming Lien, Ling-Yen Yeh, Hun-Jan Tao
  • Publication number: 20070190730
    Abstract: A method for improving uniformity of stressors of MOS devices is provided. The method includes forming a gate dielectric over a semiconductor substrate, forming a gate electrode on the gate dielectric, forming a spacer on respective sidewalls of the gate electrode and the gate dielectric, forming a recess in the semiconductor adjacent the spacer, and depositing SiGe in the recess to form a SiGe stressor. The method further includes etching the SiGe stressor to improve the uniformity of SiGe stressors.
    Type: Application
    Filed: February 13, 2006
    Publication date: August 16, 2007
    Inventors: Yu-Lien Huang, Jim Huang, Ling-Yen Yeh, Hun-Jan Tao
  • Publication number: 20070148881
    Abstract: A method for forming stressors in a semiconductor substrate is provided. The method includes providing a semiconductor substrate including a first device region and a second device region, forming shallow trench isolation (STI) regions with a high-shrinkage dielectric material in the first and the second device regions wherein the STI regions define a first active region in the first device region and a second active region in the second device region, forming an insulation mask over the STI region and the first active region in the first device region wherein the insulation mask does not extend over the second device region, and performing a stress-tuning treatment to the semiconductor substrate. The first active region and second active region have tensile stress and compressive stress respectively. An NMOS and a PMOS device are formed on the first and second active regions, respectively.
    Type: Application
    Filed: December 28, 2005
    Publication date: June 28, 2007
    Inventors: Kai-Ting Tseng, Yu-Lien Huang, Hao-Ming Lien, Ling-Yen Yeh, Hun-Jan Tao