Patents by Inventor Lingyi Zheng

Lingyi Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030176062
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Application
    Filed: January 22, 2003
    Publication date: September 18, 2003
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng
  • Publication number: 20030176057
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Application
    Filed: January 22, 2003
    Publication date: September 18, 2003
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng
  • Publication number: 20030176061
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Application
    Filed: January 22, 2003
    Publication date: September 18, 2003
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng
  • Publication number: 20030176060
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Application
    Filed: January 22, 2003
    Publication date: September 18, 2003
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng
  • Publication number: 20030176047
    Abstract: The invention includes a method for treating a plurality of discrete semiconductor substrates. The discrete semiconductor substrates are placed within a reactor chamber. While the substrates are within the chamber, they are simultaneously exposed to one or more of H, F and Cl to remove native oxide. After removing the native oxide, the substrates are simultaneously exposed to a first reactive material to form a first mass across at least some exposed surfaces of the substrates. The first reactive material is removed from the reaction chamber, and subsequently the substrates are exposed to a second reactive material to convert the first mass to a second mass. The invention also includes apparatuses which can be utilized for simultaneous ALD treatment of a plurality of discrete semiconductor substrates.
    Type: Application
    Filed: January 22, 2003
    Publication date: September 18, 2003
    Inventors: Trung Tri Doan, Lyle D. Breiner, Er-Xuan Ping, Lingyi A. Zheng
  • Publication number: 20030166318
    Abstract: A process of forming a capacitor structure over a semiconductor substrate by atomic layer deposition to achieve uniform thickness in memory cell dielectric layers, particularly where the dielectric layer is formed in a container-type capacitor structure. In accordance with several embodiments of the present invention, a process for forming a capacitor structure over a semiconductor substrate is provided. Other embodiments of the present invention relate to processes for forming memory cell capacitor structures, memory cells, and memory cell arrays. Capacitor structures, memory cells, and memory cell arrays are also provided.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 4, 2003
    Inventors: Lingyi A. Zheng, Er-Xuan Ping, Lyle Breiner, Trung T. Doan
  • Patent number: 6613628
    Abstract: A method of forming a capacitor with reduced leakage current on a substrate in a semiconductor device is set forth. A first layer of a conductive material is formed over the substrate, and a second layer of a dielectric is formed over the first layer. The second layer is contacted with hydrogen, oxygen and nitrous oxide gases to form an oxidation layer over the second layer. A third layer of a conductive material is formed over the second layer to thereby form the capacitor. While the capacitor exhibits an improved leakage current reduction, overall capacitance is substantially unaffected, as compared to a similar capacitor having an oxidation layer built from a combination of oxygen and hydrogen gases only.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: September 2, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Er-Xuan Ping
  • Patent number: 6607965
    Abstract: The invention encompasses a method of forming a dielectric material. A nitrogen-comprising layer is formed on at least some of the surface of a rugged polysilicon substrate to form a first portion of a dielectric material. After the nitrogen-comprising layer is formed, at least some of the substrate is subjected to dry oxidation with one or both of NO and N2O to form a second portion of the dielectric material. The invention also encompasses a method of forming a capacitor. A layer of rugged silicon is formed over a substrate, and a nitrogen-comprising layer is formed on the layer of rugged silicon. Some of the rugged silicon is exposed through the nitrogen-comprising layer. After the nitrogen-comprising layer is formed, at least some of the exposed rugged silicon is subjected to dry oxidation conditions with one or both of NO and N2O. Subsequently, a conductive material layer is formed over the nitrogen-comprising layer.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: August 19, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Behnam Moradi, Er-Xuan Ping, Lingyi A. Zheng, John Packard
  • Publication number: 20030136988
    Abstract: Semiconductor container capacitor structures having a diffusion barrier layer to reduce damage of the bottom cell plate and any underlying transistor from species diffused through the surrounding insulating material are adapted for use in high-density memory arrays. The diffusion barrier layer can protect the bottom cell plate, any underlying access transistor and even the surface of the surrounding insulating layer during processing including pre-treatment, formation and post-treatment of the capacitor dielectric layer. The diffusion barrier layer inhibits or impedes diffusion of species that may cause damage to the bottom plate or an underlying transistor, such as oxygen-containing species, hydrogen-containing species and/or other undesirable species. The diffusion barrier layer is formed separate from the capacitor dielectric layer. This facilitates thinning of the dielectric layer as the dielectric layer need not provide such diffusion protection.
    Type: Application
    Filed: January 8, 2003
    Publication date: July 24, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Er-Xuan Ping
  • Patent number: 6583441
    Abstract: The invention encompasses a method of forming a dielectric material. A nitrogen-comprising layer is formed on at least some of the surface of a rugged polysilicon substrate to form a first portion of a dielectric material. After the nitrogen-comprising layer is formed, at least some of the substrate is subjected to dry oxidation with one or both of NO and N2O to form a second portion of the dielectric material. The invention also encompasses a method of forming a capacitor. A layer of rugged silicon is formed over a substrate, and a nitrogen-comprising layer is formed on the layer of rugged silicon. Some of the rugged silicon is exposed through the nitrogen-comprising layer. After the nitrogen-comprising layer is formed, at least some of the exposed rugged silicon is subjected to dry oxidation conditions with one or both of NO and N2O. Subsequently, a conductive material layer is formed over the nitrogen-comprising layer. Additionally, the invention encompasses a capacitor structure.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: June 24, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Behnam Moradi, Er-Xuan Ping, Lingyi A. Zheng, John Packard
  • Publication number: 20030104672
    Abstract: A method of forming a capacitor with reduced leakage current on a substrate in a semiconductor device is set forth. A first layer of a conductive material is formed over the substrate, and a second layer of a dielectric is formed over the first layer. The second layer is contacted with hydrogen, oxygen and nitrous oxide gases to form an oxidation layer over the second layer. A third layer of a conductive material is formed over the second layer to thereby form the capacitor. While the capacitor exhibits an improved leakage current reduction, overall capacitance is substantially unaffected, as compared to a similar capacitor having an oxidation layer built from a combination of oxygen and hydrogen gases only.
    Type: Application
    Filed: January 13, 2003
    Publication date: June 5, 2003
    Inventors: Lingyi A. Zheng, Er-Xuan Ping
  • Publication number: 20030098482
    Abstract: Semiconductor container capacitor structures having a diffusion barrier layer to reduce damage of the bottom cell plate and any underlying transistor from species diffused through the surrounding insulating material are adapted for use in high-density memory arrays. The diffusion barrier layer can protect the bottom cell plate, any underlying access transistor and even the surface of the surrounding insulating layer during processing including pre-treatment, formation and post-treatment of the capacitor dielectric layer. The diffusion barrier layer inhibits or impedes diffusion of species that may cause damage to the bottom plate or an underlying transistor, such as oxygen-containing species, hydrogen-containing species and/or other undesirable species. The diffusion barrier layer is formed separate from the capacitor dielectric layer. This facilitates thinning of the dielectric layer as the dielectric layer need not provide such diffusion protection.
    Type: Application
    Filed: January 8, 2003
    Publication date: May 29, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Er-Xuan Ping
  • Publication number: 20030098480
    Abstract: A capacitor structure is formed over a semiconductor substrate by atomic layer deposition to achieve uniform thickness in memory cell dielectric layers, particularly where the dielectric layer is formed in a container-type capacitor structure. In accordance with several embodiments of the present invention, a process for forming a capacitor structure over a semiconductor substrate is provided. Other embodiments of the present invention relate to processes for forming memory cell capacitor structures, memory cells, and memory cell arrays. Capacitor structures, memory cells, and memory cell arrays are also provided.
    Type: Application
    Filed: August 27, 2002
    Publication date: May 29, 2003
    Inventors: Lingyi A. Zheng, Er-Xuan Ping, Lyle Breiner, Trung T. Doan
  • Patent number: 6562684
    Abstract: The invention encompasses a method of forming a dielectric material. A nitrogen-comprising layer is formed on at least some of the surface of a rugged polysilicon substrate to form a first portion of a dielectric material. After the nitrogen-comprising layer is formed, at least some of the substrate is subjected to dry oxidation with one or both of NO and N2O to form a second portion of the dielectric material. The invention also encompasses a method of forming a capacitor. A layer of rugged silicon is formed over a substrate, and a nitrogen-comprising layer is formed on the layer of rugged silicon. Some of the rugged silicon is exposed through the nitrogen-comprising layer. After the nitrogen-comprising layer is formed, at least some of the exposed rugged silicon is subjected to dry oxidation conditions with one or both of NO and N2O. Subsequently, a conductive material layer is formed over the nitrogen-comprising layer. Additionally, the invention encompasses a capacitor structure.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: May 13, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Behnam Moradi, Er-Xuan Ping, Lingyi A. Zheng, John Packard
  • Patent number: 6551893
    Abstract: A capacitor structure is formed over a semiconductor substrate by atomic layer deposition to achieve uniform thickness in memory cell dielectric layers, particularly where the dielectric layer is formed in a container-type capacitor structure. In accordance with several embodiments of the present invention, a process for forming a capacitor structure over a semiconductor substrate is provided. Other embodiments of the present invention relate to processes for forming memory cell capacitor structures, memory cells, and memory cell arrays. Capacitor structures, memory cells, and memory cell arrays are also provided.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: April 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Er-Xuan Ping, Lyle Breiner, Trung T. Doan
  • Publication number: 20030067029
    Abstract: A container capacitor and method of forming the container capacitor are provided. The container capacitor comprises a lower electrode fabricated by forming a layer of doped polysilicon within a container in an insulative layer disposed on a substrate; forming a barrier layer over the polysilicon layer within the container; removing the insulative layer to expose the polysilicon layer outside the container; nitridizing the exposed polysilicon layer at a low temperature, preferably by remote plasma nitridation; removing the barrier layer to expose the inner surface of the polysilicon layer within the container; and forming HSG polysilicon over the inner surface of the polysilicon layer. The capacitor can be completed by forming a dielectric layer over the lower electrode, and an upper electrode over the dielectric layer. The cup-shaped bottom electrode formed within the container defines an interior surface comprising HSG polysilicon, and an exterior surface comprising smooth polysilicon.
    Type: Application
    Filed: June 26, 2002
    Publication date: April 10, 2003
    Applicant: Micron Technology, Inc.
    Inventor: Lingyi A. Zheng
  • Publication number: 20030067028
    Abstract: A container capacitor and method of forming the container capacitor are provided. The container capacitor comprises a lower electrode fabricated by forming a layer of doped polysilicon within a container in an insulative layer disposed on a substrate; forming a barrier layer over the polysilicon layer within the container; removing the insulative layer to expose the polysilicon layer outside the container; nitridizing the exposed polysilicon layer at a low temperature, preferably by remote plasma nitridation; removing the barrier layer to expose the inner surface of the polysilicon layer within the container; and forming HSG polysilicon over the inner surface of the polysilicon layer. The capacitor can be completed by forming a dielectric layer over the lower electrode, and an upper electrode over the dielectric layer. The cup-shaped bottom electrode formed within the container defines an interior surface comprising HSG polysilicon, and an exterior surface comprising smooth polysilicon.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 10, 2003
    Inventor: Lingyi A. Zheng
  • Publication number: 20030064566
    Abstract: A memory cell container of a DRAM semiconductor memory device and method for manufacturing the cell container. The cell includes a container formed in a structural layer such as borophosphosilicate glass. The container is then lined with a polysilicon such as hemispherical grained polysilicon. A dielectric layer is deposited over the polysilicon layer. A barrier layer is deposited over the dielectric layer such that the opening of the container is not covered by the sidewalls or the bottom of the container. The cell is then oxidized and the barrier layer provides protection as an oxygen barrier during the oxidation or any followed re-oxidation process.
    Type: Application
    Filed: October 31, 2002
    Publication date: April 3, 2003
    Inventors: Sam Yang, Lingyi A. Zheng
  • Patent number: 6538274
    Abstract: Semiconductor container capacitor structures having a diffusion barrier layer to reduce damage of the bottom cell plate and any underlying transistor from species diffused through the surrounding insulating material are adapted for use in high-density memory arrays. The diffusion barrier layer can protect the bottom cell plate, any underlying access transistor and even the surface of the surrounding insulating layer during processing including pre-treatment, formation and post-treatment of the capacitor dielectric layer. The diffusion barrier layer inhibits or impedes diffusion of species that may cause damage to the bottom plate or an underlying transistor, such as oxygen-containing species, hydrogen-containing species and/or other undesirable species. The diffusion barrier layer is formed separate from the capacitor dielectric layer. This facilitates thinning of the dielectric layer as the dielectric layer need not provide such diffusion protection.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: March 25, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Er-Xuan Ping
  • Publication number: 20030022436
    Abstract: Methods of forming a uniform cell nitride dielectric layer over varying substrate materials such as an insulation material and a conductive or semiconductive material, methods of forming capacitors having a uniform nitride dielectric layer deposited onto varying substrate materials such as an insulation layer and overlying conductive or semiconductive electrode, and capacitors formed from such methods are provided. In one embodiment of forming a uniform cell nitride layer in a capacitor construction, a surface-modifying agent is implanted into exposed surfaces of an insulation layer of a capacitor container by low angle implantation to alter the surface properties of the insulation layer for enhanced nucleation of the depositing cell nitride material, preferably while rotating the substrate for adequate implantation of the modifying substance along the top corner portion of the container.
    Type: Application
    Filed: July 24, 2001
    Publication date: January 30, 2003
    Inventor: Lingyi A. Zheng