Patents by Inventor Lionel Ernest Edwin

Lionel Ernest Edwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230314817
    Abstract: A display subsystem for a virtual image generation system used by an end user, comprises first and second waveguide apparatuses, first and second projection subassemblies configured for introducing first and second light beams respectively into the first and second waveguide apparatuses, such that at least a first light ray and at least a second light ray respectively exit the first and second waveguide apparatuses to display first and second monocular images as a binocular image to the end user, and a light sensing assembly configured for detecting at least one parameter indicative of a mismatch between the displayed first and second monocular images as the binocular image.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Applicant: MAGIC LEAP, INC.
    Inventors: Lionel Ernest EDWIN, Samuel A. MILLER
  • Patent number: 11768377
    Abstract: A display subsystem for a virtual image generation system used by an end user, comprises first and second waveguide apparatuses, first and second projection subassemblies configured for introducing first and second light beams respectively into the first and second waveguide apparatuses, such that at least a first light ray and at least a second light ray respectively exit the first and second waveguide apparatuses to display first and second monocular images as a binocular image to the end user, and a light sensing assembly configured for detecting at least one parameter indicative of a mismatch between the displayed first and second monocular images as the binocular image.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: September 26, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Samuel A. Miller
  • Publication number: 20230280594
    Abstract: A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
    Type: Application
    Filed: May 11, 2023
    Publication date: September 7, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Brian T. Schowengerdt, Kevin Richard Curtis, William Hudson Welch, Pierre St. Hilaire, Hui-Chuan Cheng
  • Publication number: 20230267677
    Abstract: Techniques are described for operating an optical system. In some embodiments, light associated with a world object is received at the optical system. Virtual image light is projected onto an eyepiece of the optical system. A portion of a system field of view of the optical system to be at least partially dimmed is determined based on information detected by the optical system. A plurality of spatially-resolved dimming values for the portion of the system field of view may be determined based on the detected information. The detected information may include light information, gaze information, and/or image information. A dimmer of the optical system may be adjusted to reduce an intensity of light associated with the world object in the portion of the system field of view according to the plurality of dimming values.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Lionel Ernest Edwin, Michael Anthony Klug
  • Patent number: 11733516
    Abstract: An augmented reality head mounted display system an eyepiece having a transparent emissive display. The eyepiece and transparent emissive display are positioned in an optical path of a user's eye in order to transmit light into the user's eye to form images. Due to the transparent nature of the display, the user can see an outside environment through the transparent emissive display. The transmissive emissive display comprising a plurality of emitters configured to emit light into the eye of the user.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 22, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh
  • Publication number: 20230251492
    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 10, 2023
    Inventors: Ivan Li Chuen YEOH, Lionel Ernest EDWIN, Nicole Elizabeth SAMEC, Nastasja U. ROBAINA, Vaibhav MATHUR, Timothy Mark DALRYMPLE, Jason SCHAEFER, Clinton CARLISLE, Hui-Chuan CHENG, Chulwoo OH, Philip PREMYSLER, Xiaoyang ZHANG, Adam C. CARLSON
  • Publication number: 20230237749
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Application
    Filed: April 5, 2023
    Publication date: July 27, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. SCHOWENGERDT, Mathew D. WATSON, David TINCH, Ivan Li Chuen YEOH, John Graham MACNAMARA, Lionel Ernest EDWIN, Michael Anthony KLUG, William Hudson WELCH
  • Patent number: 11710469
    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include determining a fixation point of a user's eyes. Location information associated with a first virtual object to be presented to the user via a display device is obtained. A resolution-modifying parameter of the first virtual object is obtained. A particular resolution at which to render the first virtual object is identified based on the location information and the resolution-modifying parameter of the first virtual object. The particular resolution is based on a resolution distribution specifying resolutions for corresponding distances from the fixation point. The first virtual object rendered at the identified resolution is presented to the user via the display system.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: July 25, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, Lionel Ernest Edwin, Xiaoyang Zhang, Bjorn Nicolaas Servatius Vlaskamp
  • Patent number: 11686944
    Abstract: A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: June 27, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Brian T. Schowengerdt, Kevin Richard Curtis, William Hudson Welch, Pierre St. Hilaire, Hui-Chuan Cheng
  • Publication number: 20230195212
    Abstract: A method of performing localization of a handheld device with respect to a wearable device includes capturing, by a first imaging device mounted to the handheld device, a fiducial image containing a number of fiducials affixed to the wearable device and capturing, by a second imaging device mounted to the handheld device, a world image containing one or more features surrounding the handheld device. The method also includes obtaining, by a sensor mounted to the handheld device, handheld data indicative of movement of the handheld device, determining the number of fiducials contained in the fiducial image, and updating a position and an orientation of the handheld device using at least one of the fiducial image or the world image and the handheld data.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 22, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Zachary C. Nienstedt, Samuel A. Miller, Barak Freedman, Lionel Ernest Edwin, Eric C. Browy, William Hudson Welch, Ron Liraz Lidji
  • Patent number: 11676333
    Abstract: Techniques are described for operating an optical system. In some embodiments, light associated with a world object is received at the optical system. Virtual image light is projected onto an eyepiece of the optical system. A portion of a system field of view of the optical system to be at least partially dimmed is determined based on information detected by the optical system. A plurality of spatially-resolved dimming values for the portion of the system field of view may be determined based on the detected information. The detected information may include light information, gaze information, and/or image information. A dimmer of the optical system may be adjusted to reduce an intensity of light associated with the world object in the portion of the system field of view according to the plurality of dimming values.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: June 13, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Lionel Ernest Edwin, Michael Anthony Klug
  • Patent number: 11662585
    Abstract: A display subsystem for a virtual image generation system comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a mechanical drive assembly to which the optical fiber is mounted as a fixed-free flexible cantilever. The drive assembly is configured for displacing a distal end of the optical fiber about a fulcrum in accordance with a scan pattern, such that the emitted light diverges from a longitudinal axis coincident with the fulcrum. The display subsystem further comprises an optical modulation apparatus configured for converging the light from the optical fiber towards the longitudinal axis, and an optical waveguide input apparatus configured for directing the light from the optical modulation apparatus down the planar waveguide apparatus, such that the planar waveguide apparatus displays one or more image frames to an end user.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: May 30, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Ivan Yeoh, Hui-Chuan Cheng, Lionel Ernest Edwin, David Tinch, William Hudson Welch
  • Patent number: 11651566
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: May 16, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
  • Patent number: 11644669
    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: May 9, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Nicole Elizabeth Samec, Nastasja U. Robaina, Vaibhav Mathur, Timothy Mark Dalrymple, Jason Schaefer, Clinton Carlisle, Hui-Chuan Cheng, Chulwoo Oh, Philip Premysler, Xiaoyang Zhang, Adam C. Carlson
  • Patent number: 11625090
    Abstract: Techniques are disclosed for performing localization of a handheld device with respect to a wearable device. At least one sensor mounted to the handheld device, such as an inertial measurement unit (IMU), may obtain handheld data indicative of movement of the handheld device with respect to the world. An imaging device mounted to either the handheld device or the wearable device may capture a fiducial image containing a number of fiducials affixed to the other device. The number of fiducials contained in the image are determined. Based on the number of fiducials, at least one of a position and an orientation of the handheld device with respect to the wearable device are updated based on the image and the handheld data in accordance with a first operating state, a second operating state, or a third operating state.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: April 11, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Zachary C. Nienstedt, Samuel A. Miller, Barak Freedman, Lionel Ernest Edwin, Eric C. Browy, William Hudson Welch, Ron Liraz Lidji
  • Publication number: 20230108721
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Application
    Filed: November 28, 2022
    Publication date: April 6, 2023
    Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Samuel A. Miller
  • Patent number: 11604353
    Abstract: This disclosure describes a head-mounted display with a display assembly configured to display content to most or all of a user's field of view. The display assembly can be configured to display content in far-peripheral regions of the user's field of view differently than content upon which a user can focus. For example, spatial resolution, color resolution, refresh rate and intensity (i.e. brightness) can be adjusted to save resources and/or to bring attention to virtual content positioned within a far-peripheral region. In some embodiments, these changes can save processing resources without detracting from the user's overall experience.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: March 14, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Samuel A. Miller, William Hudson Welch, Lionel Ernest Edwin, Ivan Li Chuen Yeoh
  • Publication number: 20230057556
    Abstract: Techniques are described for operating an optical system. In some embodiments, light associated with a world object is received at the optical system. Virtual image light is projected onto an eyepiece of the optical system. A portion of a system field of view of the optical system to be at least partially dimmed is determined based on information detected by the optical system. A plurality of spatially-resolved dimming values for the portion of the system field of view may be determined based on the detected information. The detected information may include light information, gaze information, and/or image information. A dimmer of the optical system may be adjusted to reduce an intensity of light associated with the world object in the portion of the system field of view according to the plurality of dimming values.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 23, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Vaibhav Mathur, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Lionel Ernest Edwin, Michael Anthony Klug
  • Publication number: 20230037046
    Abstract: A display system includes a head-mounted display configured to project light, having different amounts of wavefront divergence, to an eye of a user to display virtual image content appearing to be disposed at different depth planes. The wavefront divergence may be changed in discrete steps, with the change in steps being triggered based upon whether the user is fixating on a particular depth plane. The display system may be calibrated for switching depth planes for a main user. Upon determining that a guest user is utilizing the system, rather than undergoing a full calibration, the display system may be configured to switch depth planes based on a rough determination of the virtual content that the user is looking at. The virtual content has an associated depth plane and the display system may be configured to switch to the depth plane of that virtual content.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 2, 2023
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Erik Fonseka, Paul M. Greco, Jeffrey Scott Sommers, Bradley Vincent Stuart, Shiuli Das, Suraj Manjunath Shanbhag
  • Publication number: 20230013334
    Abstract: A wearable display device suitable for use in an augmented reality environment is disclosed. The wearable display device can include a projector configured to project light through diffractive optical elements that then distributed the light to multiple display regions. Each of the display regions can be arranged to project light out of the wearable display device towards an eye of a user. Since each of the display regions are positioned in different locations with respect to an eye of a user, the result is that each display region directs light in a different direction. In this way the apparent field of view for a user of the wearable display can be substantially increased.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 19, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Ivan Li-Chuen Yeoh, Lionel Ernest Edwin