Patents by Inventor Liron Tayeb

Liron Tayeb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210275296
    Abstract: An implantable prosthetic valve that is radially collapsible to a collapsed configuration and radially expandable to an expanded configuration includes an annular frame having an inflow end, an outflow end, and a longitudinal axis. A leaflet structure is positioned within the frame and secured thereto, and a sealing element is secured to the frame. The sealing element includes a first woven portion extending circumferentially around the frame. The first woven portion includes a plurality of interwoven filaments. The sealing element further includes a second woven portion extending circumferentially around the frame and spaced apart from the first woven portion along the longitudinal axis of the frame. At least a portion of the filaments exit the weave of the first woven portion and form loops extending radially outwardly from the frame.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Inventors: Tamir S. Levi, Giolnara Pinhas, Liraz Marom, Elena Sherman, Noam Mizrahi, Delfin Rafael Ruiz, Sandip Vasant Pawar, Liron Tayeb
  • Patent number: 11051939
    Abstract: The active introducer sheath systems disclosed herein are expanded by activating a translation mechanism at the handle. The sheath has an inner cylindrical structure of comingled fixed and mobile elongate rods bound together by an attachment line. Activating the translation mechanism causes the mobile rods to move axially with respect to the fixed rods, changing the internal tension in the attachment line. Increased tension draws the fixed and mobile rods closer together, decreasing the diameter of the cylindrical structure. Decreased tension in the attachment line enables the fixed and mobile rods to move apart, increasing the diameter of the cylindrical structure. A prosthetic device, such as a prosthetic heart valve, can be routed through the expanded sheath and to the implantation site. During implantation, the sheath can be contracted back to its original outer diameter, and expanded again for retrieval of the delivery apparatus.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: July 6, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: David Maimon, Liron Tayeb
  • Patent number: 11013595
    Abstract: An implantable prosthetic valve that is radially collapsible to a collapsed configuration and radially expandable to an expanded configuration includes an annular frame having an inflow end, an outflow end, and a longitudinal axis. A leaflet structure is positioned within the frame and secured thereto, and a sealing element is secured to the frame. The sealing element includes a first woven portion extending circumferentially around the frame. The first woven portion includes a plurality of interwoven filaments. The sealing element further includes a second woven portion extending circumferentially around the frame and spaced apart from the first woven portion along the longitudinal axis of the frame. At least a portion of the filaments exit the weave of the first woven portion and form loops extending radially outwardly from the frame.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: May 25, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Tamir S. Levi, Giolnara Pinhas, Liraz Marom, Elena Sherman, Noam Mizrahi, Delfin Rafael Ruiz, Sandip Vasant Pawar, Liron Tayeb
  • Publication number: 20210085459
    Abstract: The expandable sheath and methods of use disclosed herein are used to deliver a prosthetic device through a patient's vasculature. The sheath is constructed to be expandable in the circumferential direction, while maintaining sufficient stiffness in the longitudinal direction to withstand pushing and resist kinking. The sheath includes a plurality of curved arms extending outwardly from a longitudinally extending spine. The curved arms move away from the longitudinal axis of the sheath when pushed radially outwardly by a passing prosthetic device, and move back toward the longitudinal axis once the prosthetic device has passed.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Applicant: Edwards Lifesciences Corporation
    Inventors: David Maimon, Eran Goldberg, Liron Tayeb
  • Publication number: 20210052849
    Abstract: Disclosed herein are reinforced expandable introducer sheaths and methods of using the same. The sheaths minimize trauma to the patient's vasculature by including a reinforcing member to improve the push force of the sheath while reducing the chances of kinking during delivery of a prosthetic device. The sheath can include a plurality of expandable rings aligned along the longitudinal axis of the sheath and coupled together to form an elongated tubular structure. The sheath can also include a plurality of radial members circumferentially arranged to form a tubular support structure. The radial members slidingly interconnected around the circumference of the tubular structure to facilitate radial expansion of the sheath.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 25, 2021
    Applicant: Edwards Lifesciences Corporation
    Inventors: Eran Goldberg, Liron Tayeb, David Maimon
  • Patent number: 10856981
    Abstract: The expandable sheath and methods of use disclosed herein are used to deliver a prosthetic device through a patient's vasculature. The sheath is constructed to be expandable in the circumferential direction, while maintaining sufficient stiffness in the longitudinal direction to withstand pushing and resist kinking. The sheath includes a plurality of curved arms extending outwardly from a longitudinally extending spine. The curved arms move away from the longitudinal axis of the sheath when pushed radially outwardly by a passing prosthetic device, and move back toward the longitudinal axis once the prosthetic device has passed.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: December 8, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: David Maimon, Eran Goldberg, Liron Tayeb
  • Publication number: 20200297482
    Abstract: An assembly can comprise a radially expandable and compressible annular frame, at least one linear actuator assembly coupled to the frame and at least one locking mechanism coupled to the frame. The linear actuator can be configured to apply a distally directed force and/or a proximally directed force to the frame to radially expand or compress the frame. The locking mechanism can comprise a first sleeve member connected to the frame at a first location, a second sleeve member having internal threads and being connected to the frame at a second location, and a first screw configured to engage the internal threads of the second sleeve member to retain the frame in a radially expanded state.
    Type: Application
    Filed: March 9, 2020
    Publication date: September 24, 2020
    Inventors: David Maimon, Boaz Manash, Eyal Leiba, Ziv Yohanan, Yair A. Neumann, Anatoly Dvorsky, Jonathan Bar-Or, Oren Cohen, Ofir Witzman, Liron Tayeb, Elazar Levi Schwarcz, Noam Miller, Tomer Saar
  • Publication number: 20200253728
    Abstract: A covering layer for a transcatheter heart valve is in various embodiments configured to prevent or reduce damage to the native valve tissue around the site where the prosthetic valve is implanted. In some cases, prosthetic valves are manufactured with the covering layer attached. Other covering layers are stand-alone accessories that can be mounted onto pre-existing prosthetic valves by an end user. Covering layers that can be mounted by an end user are provided with various features that can facilitate easier attachment of the covering layer to the prosthetic valve, which further reduces the possibility of damage to the covering layer or to the valve. Another covering is provided with two layers in order to insulate and protect the native tissue surrounding the implant from damage due to friction or abrasion, and/or other movement driven wear.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 13, 2020
    Inventors: Liron Tayeb, Ilan Tamir
  • Patent number: 10631977
    Abstract: A covering layer for a transcatheter heart valve is in various embodiments configured to prevent or reduce damage to the native valve tissue around the site where the prosthetic valve is implanted. In some cases, prosthetic valves are manufactured with the covering layer attached. Other covering layers are stand-alone accessories that can be mounted onto pre-existing prosthetic valves by an end user. Covering layers that can be mounted by an end user are provided with various features that can facilitate easier attachment of the covering layer to the prosthetic valve, which further reduces the possibility of damage to the covering layer or to the valve. Another covering is provided with two layers in order to insulate and protect the native tissue surrounding the implant from damage due to friction or abrasion, and/or other movement driven wear.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: April 28, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Liron Tayeb, Ilan Tamir
  • Publication number: 20200113719
    Abstract: Delivery systems and catheters including lock and release connectors for implantable devices and methods for retaining, positioning, and deploying a medical device are disclosed. The lock and release connectors can include a body and at least one door engaged with the body, wherein the door is moveable from a first position to a second position. The lock and release connectors can further include at least one fastener connecting at least one end of the door to the body. The door can be integral with the body or connected and can comprise a shape memory material and/or other materials.
    Type: Application
    Filed: December 16, 2019
    Publication date: April 16, 2020
    Inventors: John J. Desrosiers, Daniel James Murray, Michael G. Valdez, Liron Tayeb, David Maimon, Eitan Atias, Adi Carmi
  • Patent number: 10603165
    Abstract: An assembly can comprise a radially expandable and compressible annular frame, at least one linear actuator assembly coupled to the frame and at least one locking mechanism coupled to the frame. The linear actuator can be configured to apply a distally directed force and/or a proximally directed force to the frame to radially expand or compress the frame. The locking mechanism can comprise a first sleeve member connected to the frame at a first location, a second sleeve member having internal threads and being connected to the frame at a second location, and a first screw configured to engage the internal threads of the second sleeve member to retain the frame in a radially expanded state.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: March 31, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: David Maimon, Boaz Manash, Eyal Leiba, Ziv Yohanan, Yair A. Neumann, Anatoly Dvorsky, Jonathan Bar-Or, Oren Cohen, Ofir Witzman, Liron Tayeb, Elazar Levi Schwarcz, Noam Miller, Tomer Saar
  • Patent number: 10470876
    Abstract: Embodiments of prosthetic valves for implantation within a native mitral valve are provided. A prosthetic valve may comprise a radially compressible main body and a one-way valve portion. The prosthetic valve may further comprise one or more ventricular anchors coupled to the main body and disposed outside of the main body. The ventricular anchors may be configured such that a reduced profile of the prosthetic valve is possible. A space may be provided between an outer surface of the main body and the ventricular anchors for receiving native mitral valve leaflets. The prosthetic valve may include an atrial sealing member adapted for placement above the annulus of the mitral valve. Methods and devices for receiving the native mitral valve leaflets between the ventricular anchors and the main body are described.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 12, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: Nikolay Gurovich, Mohammad Jafari, Liron Tayeb, Ilan Tamir, Ziv Yohanan, Noam Nir, David Maimon, Boaz Manash
  • Publication number: 20190307589
    Abstract: An expandable sheath is disclosed herein, which has a first polymeric layer and a braided layer positioned radially outward of the first polymeric layer. The braided layer includes a plurality of filaments braided together. The expandable sheaths further include a resilient elastic layer positioned radially outward of the braided layer. The elastic layer is configured to apply radial force to the braided layer and the first polymeric layer. The expandable sheath further includes a second polymeric layer positioned radially outward of the elastic layer and bonded to the first polymeric layer such that the braided layer and the elastic layer are encapsulated between the first and second polymeric layers. Methods of making and using the devices disclosed herein are also disclosed, as are crimping devices that may be used in methods of making the devices disclosed herein.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 10, 2019
    Inventors: Eran Goldberg, Noa Axelrod, Yair A. Neumann, Boaz Manash, David Maimon, Eyal Leiba, Ralph Schneider, Liron Tayeb
  • Publication number: 20190060069
    Abstract: The active introducer sheath systems disclosed herein are expanded by activating a translation mechanism at the handle. The sheath has an inner cylindrical structure of comingled fixed and mobile elongate rods bound together by an attachment line. Activating the translation mechanism causes the mobile rods to move axially with respect to the fixed rods, changing the internal tension in the attachment line. Increased tension draws the fixed and mobile rods closer together, decreasing the diameter of the cylindrical structure. Decreased tension in the attachment line enables the fixed and mobile rods to move apart, increasing the diameter of the cylindrical structure. A prosthetic device, such as a prosthetic heart valve, can be routed through the expanded sheath and to the implantation site. During implantation, the sheath can be contracted back to its original outer diameter, and expanded again for retrieval of the delivery apparatus.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 28, 2019
    Inventors: David Maimon, Liron Tayeb
  • Publication number: 20190046314
    Abstract: An implantable prosthetic valve that is radially collapsible to a collapsed configuration and radially expandable to an expanded configuration includes an annular frame having an inflow end, an outflow end, and a longitudinal axis. A leaflet structure is positioned within the frame and secured thereto, and a sealing element is secured to the frame. The sealing element includes a first woven portion extending circumferentially around the frame. The first woven portion includes a plurality of interwoven filaments. The sealing element further includes a second woven portion extending circumferentially around the frame and spaced apart from the first woven portion along the longitudinal axis of the frame. At least a portion of the filaments exit the weave of the first woven portion and form loops extending radially outwardly from the frame.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 14, 2019
    Inventors: Tamir S. Levi, Giolnara Pinhas, Liraz Marom, Elena Sherman, Noam Mizrahi, Delfin Rafael Ruiz, Sandip Vasant Pawar, Liron Tayeb
  • Publication number: 20190000615
    Abstract: Docking stations for transcatheter valves are described. The docking stations can include an expandable frame, at least one sealing portion, and a valve seat. The expandable frame can be configured to conform to an interior shape of a portion of the circulatory system when expanded inside the circulatory system. The sealing portion can be configured to contact an interior surface of the circulatory system to create a seal. The valve seat can be connected to the expandable frame and can be configured to support an expandable transcatheter valve. The docking stations are adaptable to different anatomies/locations to allow implantation of a transcatheter valve in a variety of anatomies/locations.
    Type: Application
    Filed: July 13, 2018
    Publication date: January 3, 2019
    Inventors: Liron Tayeb, Eran Goldberg, David Maimon, Adi Carmi, Arie Tylis, Ofir Witzman, Ralph Schneider, Mohammad Jafari, Hengchu Cao, Eason Michael Abbott, Dustin P. Armer, Michael D. Franklin, Tomer Saar, Anatoly Dvorsky, John J. Desrosiers, Daniel James Murray, Michael G. Valdez, Assaf Bash, Amir Blumenfeld, Noa Axelrod, Eitan Atias
  • Publication number: 20180325665
    Abstract: A prosthetic heart valve includes an annular frame including a plurality of strut members that is radially collapsible and expandable. A leaflet structure is situated within the frame, and includes a plurality of leaflets having opposing commissure tab portions on opposite sides of the leaflet. Each commissure tab portion is paired with an adjacent commissure tab portion of an adjacent leaflet to form one or more commissures. A commissure support element is positioned at each of the commissures, and comprise a first member and a second member that are separable from each other and configured to receive leaflets therebetween. The first and second members are detached from the frame and spaced radially inwardly from the frame such that the members contact the leaflets radially inward from the frame and limit movement of the leaflets so that they articulate at a location that is spaced radially inwardly from the frame.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 15, 2018
    Inventors: Nikolay Gurovich, Michael Bukin, Alexey M. Tsypenyuk, Elena Sherman, Dikla Kersh, Boaz Manash, Liron Tayeb, Ziv Yohanan, Alexander Barash, Yair A. Neumann, Tomer Saar
  • Publication number: 20180153689
    Abstract: An assembly can comprise a radially expandable and compressible annular frame, at least one linear actuator assembly coupled to the frame and at least one locking mechanism coupled to the frame. The linear actuator can be configured to apply a distally directed force and/or a proximally directed force to the frame to radially expand or compress the frame. The locking mechanism can comprise a first sleeve member connected to the frame at a first location, a second sleeve member having internal threads and being connected to the frame at a second location, and a first screw configured to engage the internal threads of the second sleeve member to retain the frame in a radially expanded state.
    Type: Application
    Filed: December 4, 2017
    Publication date: June 7, 2018
    Inventors: David Maimon, Boaz Manash, Eyal Leiba, Ziv Yohanan, Yair A. Neumann, Anatoly Dvorsky, Jonathan Bar-Or, Oren Cohen, Ofir Witzman, Liron Tayeb, Elazar Levi Schwarcz, Noam Miller, Tomer Saar
  • Publication number: 20180008407
    Abstract: The expandable sheath and methods of use disclosed herein are used to deliver a prosthetic device through a patient's vasculature. The sheath is constructed to be expandable in the circumferential direction, while maintaining sufficient stiffness in the longitudinal direction to withstand pushing and resist kinking The sheath includes a plurality of curved arms extending outwardly from a longitudinally extending spine. The curved arms move away from the longitudinal axis of the sheath when pushed radially outwardly by a passing prosthetic device, and move back toward the longitudinal axis once the prosthetic device has passed.
    Type: Application
    Filed: June 28, 2017
    Publication date: January 11, 2018
    Applicant: Edwards Lifesciences Corporation
    Inventors: David Maimon, Eran Goldberg, Liron Tayeb
  • Publication number: 20170128199
    Abstract: Embodiments of prosthetic valves for implantation within a native mitral valve are provided. A prosthetic valve may comprise a radially compressible main body and a one-way valve portion. The prosthetic valve may further comprise one or more ventricular anchors coupled to the main body and disposed outside of the main body. The ventricular anchors may be configured such that a reduced profile of the prosthetic valve is possible. A space may be provided between an outer surface of the main body and the ventricular anchors for receiving native mitral valve leaflets. The prosthetic valve may include an atrial sealing member adapted for placement above the annulus of the mitral valve. Methods and devices for receiving the native mitral valve leaflets between the ventricular anchors and the main body are described.
    Type: Application
    Filed: November 8, 2016
    Publication date: May 11, 2017
    Inventors: Nikolay Gurovich, Mohammad Jafari, Liron Tayeb, Ilan Tamir, Ziv Yohanan, Noam Nir, David Maimon, Boaz Manash