Patents by Inventor Lisa Ru-feng Hsu

Lisa Ru-feng Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210409848
    Abstract: A system for using free-space optics to interconnect a plurality of computing nodes can include a plurality of node optical transceivers that are electrically coupled to at least some of the plurality of computing nodes. The system can also include a plurality of router optical transceivers that facilitate free-space optical communications with the plurality of node optical transceivers. Each node optical transceiver among the plurality of node optical transceivers can have a corresponding router optical transceiver that is optically coupled to the node optical transceiver. The system can also include a router that is coupled to the plurality of router optical transceivers. The router can be configured to route the free-space optical communications among the plurality of computing nodes.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 30, 2021
    Inventors: Winston Allen SAUNDERS, Christian L. BELADY, Lisa Ru-Feng HSU, Hitesh BALLANI, Paolo COSTA, Douglas M. CARMEAN
  • Patent number: 11109122
    Abstract: A system for using free-space optics to interconnect a plurality of computing nodes can include a plurality of node optical transceivers that are electrically coupled to at least some of the plurality of computing nodes. The system can also include a plurality of router optical transceivers that facilitate free-space optical communications with the plurality of node optical transceivers. Each node optical transceiver among the plurality of node optical transceivers can have a corresponding router optical transceiver that is optically coupled to the node optical transceiver. The system can also include a router that is coupled to the plurality of router optical transceivers. The router can be configured to route the free-space optical communications among the plurality of computing nodes.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: August 31, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Winston Allen Saunders, Christian L. Belady, Lisa Ru-Feng Hsu, Hitesh Ballani, Paolo Costa, Douglas M. Carmean
  • Patent number: 10929139
    Abstract: Providing predictive instruction dispatch throttling to prevent resource overflow in out-of-order processor (OOP)-based devices is disclosed. An OOP-based device includes a system resource that may be consumed or otherwise occupied by instructions, as well as an execution pipeline comprising a decode stage and a dispatch stage. The OOP further maintains a running count and a resource usage threshold. Upon receiving an instruction block, the decode stage extracts a proxy value that indicates an approximate predicted count of instructions within the instruction block that will consume a system resource. The decode stage then increments the running count by the proxy value. The dispatch stage compares the running count to the resource usage threshold before dispatching any younger instruction blocks. If the running count exceeds the resource usage threshold, the dispatch stage blocks dispatching of younger instruction blocks until the running count no longer exceeds the resource usage threshold.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: February 23, 2021
    Assignee: Qualcomm Incorporated
    Inventors: Lisa Ru-feng Hsu, Vignyan Reddy Kothinti Naresh, Gregory Michael Wright
  • Publication number: 20200104163
    Abstract: Providing predictive instruction dispatch throttling to prevent resource overflow in out-of-order processor (OOP)-based devices is disclosed. In this regard, an OOP-based device includes a system resource that may be consumed or otherwise occupied by instructions, as well as an execution pipeline comprising a decode stage and a dispatch stage. The OOP further maintains a running count and a resource usage threshold. Upon receiving an instruction block, the decode stage extracts a proxy value that indicates an approximate predicted count of instructions within the instruction block that will consume a system resource. The decode stage then increments the running count by the proxy value. The dispatch stage compares the running count to the resource usage threshold before dispatching any younger instruction blocks. If the running count exceeds the resource usage threshold, the dispatch stage blocks dispatching of younger instruction blocks until the running count no longer exceeds the resource usage threshold.
    Type: Application
    Filed: September 27, 2018
    Publication date: April 2, 2020
    Inventors: Lisa Ru-feng Hsu, Vignyan Reddy Kothinti Naresh, Gregory Michael Wright