Patents by Inventor Ljerka Ukrainczyk

Ljerka Ukrainczyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160167894
    Abstract: An apparatus for locating a preform on a mold includes a preform handling tool and a force sensor coupled to the preform handling tool such that the force sensor is capable of sensing forces applied to the preform during handling of the preform by the preform handling tool. The apparatus includes a control device that is arranged and operable to move the preform handling tool relative to the mold. A method of locating the preform on the mold includes picking up the preform using the preform handling tool and placing the preform in a vicinity of the mold. Positions on the mold are mapped with an edge of the preform with the aid of the force sensor. The preform is paced on the mold according to the mapped positions.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 16, 2016
    Inventors: Kevin Thomas Morris, Andrew Nathan Nassau, Michael George Shultz, Matthew John Towner, Kevin William Uhlig, Ljerka Ukrainczyk, Thomas Achille Yorio
  • Publication number: 20160162615
    Abstract: Methods for compensating for the warp exhibited by three-dimensional glass covers as a result of ion exchange strengthening are provided. The methods use a computer-implemented model to predict/estimate changes to a target three-dimensional shape for the 3D glass cover as a result of ion exchange strengthening. The model includes the effects of ion exchange through the edge of the 3D glass cover. In an embodiment, the inverse of the predicted/estimated changes is used to produce a compensated (corrected) mold which produces as-molded parts which when subjected to ion exchange strengthening have shapes closer to the target shape than they would have had if the mold had not been compensated (corrected).
    Type: Application
    Filed: February 11, 2016
    Publication date: June 9, 2016
    Inventors: Izhar Zahoor Ahmed, Keith Raymond Gaylo, Jacob Immerman, John Richard Ridge, John Robert Saltzer, JR., Ljerka Ukrainczyk
  • Publication number: 20160152516
    Abstract: Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: Brandon Allen Bazemore, Jeffrey Alan Decker, Jiangwei Feng, Diane Kimberlie Guilfoyle, Daniel Ralph Harvey, Yuhui Jin, Laurent Joubaud, Xavier Gerard Lafosse, Alexander Mikhailovich Streltsov, Ljerka Ukrainczyk
  • Patent number: 9346706
    Abstract: Methods of forming a glass article are disclosed. In one embodiment, a method of forming a glass article includes translating a pulsed laser beam on a glass substrate sheet to form a laser damage region between a first surface and a second surface of the glass substrate sheet. The method further includes applying an etchant solution to the glass substrate sheet to remove a portion of the glass substrate sheet about the laser damage region. The method may further include strengthening the glass substrate sheet by an ion-exchange strengthening process, and coating the glass substrate sheet with an acid-resistant coating. Also disclosed are methods where the laser damage region has an initial geometry that changes to a desired geometry following the reforming of the glass substrate sheet such that the initial geometry of the laser damage region compensates for the bending of the glass substrate sheet.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 24, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Brandon A. Bazemore, Jeffrey A. Decker, Jiangwei Feng, Diane Kimberlie Guilfoyle, Daniel Ralph Harvey, Yuhui Jin, Laurent Joubaud, Xavier Lafosse, Alexander Mikhailovich Streltsov, Ljerka Ukrainczyk
  • Patent number: 9292634
    Abstract: Methods for compensating for the warp exhibited by three-dimensional glass covers as a result of ion exchange strengthening are provided. The methods use a computer-implemented model to predict/estimate changes to a target three-dimensional shape for the 3D glass cover as a result of ion exchange strengthening. The model includes the effects of ion exchange through the edge of the 3D glass cover. In an embodiment, the inverse of the predicted/estimated changes is used to produce a compensated (corrected) mold which produces as-molded parts which when subjected to ion exchange strengthening have shapes closer to the target shape than they would have had if the mold had not been compensated (corrected).
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: March 22, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Izhar Zahoor Ahmed, Keith Raymond Gaylo, Jacob Immerman, John Richard Ridge, John Robert Saltzer, Jr., Ljerka Ukrainczyk
  • Publication number: 20160031738
    Abstract: A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Weiwei Luo, Elias Panides, Rohit Rai, Irene Marjorie Slater, Ljerka Ukrainczyk, Srinavasa Rao Vaddiraju, Sam Samer Zoubi
  • Patent number: 9187358
    Abstract: A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: November 17, 2015
    Assignee: CORNING INCORPORATED
    Inventors: Weiwei Luo, Elias Panides, Rohit Rai, Irene Marjorie Slater, Ljerka Ukrainczyk, Srinivasa Rao Vaddiraju, Sam Samer Zoubi
  • Publication number: 20150299036
    Abstract: A method of forming glass ceramic articles. The articles, in some embodiments, have a three dimensional shape. A fit mixture containing the glass ceramic in fit form and a glass fit are dispersed, in some embodiments, in a vehicle to create a slurry, which is then formed into a desired shape to make a green body. Forming may be accomplished by injection molding sinter forging, casting, casting and pressing, isostatically pressing, or the like. The green body is then fired at a high temperature to burn off the binder and fuse the glass ceramic and glass fit into a solid glass ceramic body. In some embodiments, the glass ceramic powder and glass fit material may be ion exchanged to achieve surface layers having high compressive stress, resulting in high damage resistance of the article.
    Type: Application
    Filed: November 18, 2013
    Publication date: October 22, 2015
    Inventor: Ljerka Ukrainczyk
  • Publication number: 20150203394
    Abstract: In a method of making shaped glass articles, a glass sheet is placed on a mold having a shaping surface with a desired surface profile of a shaped glass article. The glass sheet is preferentially and rapidly heated by radiation while in the vicinity of the mold so that the mold remains substantially cooler than the glass sheet during the heating. The glass sheet is sagged onto the shaping surface of the mold so that at least a portion of the sagged sheet assumes the desired surface profile of the shaped glass article. After sagging and shaping, the sagged and shaped glass sheet is removed from the mold.
    Type: Application
    Filed: April 1, 2015
    Publication date: July 23, 2015
    Inventors: Ljerka Ukrainczyk, John Robert Saltzer, JR.
  • Patent number: 9010153
    Abstract: In a method of making shaped glass articles, a glass sheet is placed on a mold having a shaping surface with a desired surface profile of a shaped glass article. The glass sheet is preferentially and rapidly heated by radiation while in the vicinity of the mold so that the mold remains substantially cooler than the glass sheet during the heating. The glass sheet is sagged onto the shaping surface of the mold so that at least a portion of the sagged sheet assumes the desired surface profile of the shaped glass article. After sagging and shaping, the sagged and shaped glass sheet is removed from the mold.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: April 21, 2015
    Assignee: Corning Incorporated
    Inventors: Ljerka Ukrainczyk, John Robert Saltzer, Jr.
  • Publication number: 20150052950
    Abstract: Refractory glass-forming tools, including glass-forming molds incorporating protective metal nitride surface coatings, with optional alumina barrier layers disposed between the mold bodies and coating for high-temperature nitride coating stability, offering particular advantages for the manufacture by direct molding of optically finished glass products such as information display cover glasses from refractory alkali aluminosilicate glasses at molding temperatures up to and above 800° C.
    Type: Application
    Filed: November 5, 2014
    Publication date: February 26, 2015
    Inventors: Jiangwei Feng, Ljerka Ukrainczyk
  • Publication number: 20150047393
    Abstract: According to one embodiment, a method of manufacturing a glass article having a three-dimensional shape includes heating a glass article blank to a temperature above a setting temperature and coupling the glass article blank to an open-faced mold. The open-faced mold includes a molding region that has a three-dimensional shape that generally corresponds to the shape of the glass article and has an anisothermal temperature profile within the molding region. The method further includes maintaining an anisothermal temperature profile along the glass article blank and cooling the glass article blank while the glass article blank is coupled to the molding region of the open-faced mold to set the shape of the glass article.
    Type: Application
    Filed: July 30, 2014
    Publication date: February 19, 2015
    Inventors: Weiwei Luo, Rohit Rai, Ljerka Ukrainczyk, Zheming Zheng, Sam Samer Zoubi
  • Patent number: 8887532
    Abstract: Refractory glass-forming tools, including glass-forming molds incorporating protective metal nitride surface coatings, with optional alumina barrier layers disposed between the mold bodies and coating for high-temperature nitride coating stability, offering particular advantages for the manufacture by direct molding of optically finished glass products such as information display cover glasses from refractory alkali aluminosilicate glasses at molding temperatures up to and above 800° C.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 18, 2014
    Assignee: Corning Incorporated
    Inventors: Jiangwei Feng, Ljerka Ukrainczyk
  • Publication number: 20140331716
    Abstract: Methods for compensating for the warp exhibited by three-dimensional glass covers as a result of ion exchange strengthening are provided. The methods use a computer-implemented model to predict/estimate changes to a target three-dimensional shape for the 3D glass cover as a result of ion exchange strengthening. The model includes the effects of ion exchange through the edge of the 3D glass cover. In an embodiment, the inverse of the predicted/estimated changes is used to produce a compensated (corrected) mold which produces as-molded parts which when subjected to ion exchange strengthening have shapes closer to the target shape than they would have had if the mold had not been compensated (corrected).
    Type: Application
    Filed: May 5, 2014
    Publication date: November 13, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Izhar Zahoor Ahmed, Keith Raymond Gaylo, Jacob Immerman, John Richard Ridge, John Robert Saltzer, JR., Ljerka Ukrainczyk
  • Publication number: 20140335322
    Abstract: A process using a three-piece mold for making a three-dimensionally shaped glass article having a flat area and a curved/bend area is disclosed. The process includes placing a glass sheet on a mold having a shaping surface with a desired surface profile for the shaped glass article including a flat area and a bend area, moving a flat area plunger toward the glass sheet to compress the glass sheet, heating a portion of the glass sheet corresponding to an area above the bend area of the mold to a temperature above a forming temperature, and moving a bend area plunger toward the heated glass sheet to compress the heated glass sheet. A temperature of the glass sheet in the area above the bend area of the mold is higher than a temperature of the glass sheet in the area above the flat area of the mold when compressing the heated glass sheet with the bend area plunger.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 13, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Weiwei Luo, Elias Panides, Rohit Rai, Irene Marjorie Slater, Ljerka Ukrainczyk, Srinivasa Rao Vaddiraju, Sam Samer Zoubi
  • Publication number: 20140305167
    Abstract: A glass sheet is placed on a mold and heated to a first temperature. The glass sheet is then formed into a glass article having a three-dimensional shape using the mold. An isothermal heat transfer device comprising at least one heat pipe is provided in thermal contact with the mold. With the glass article on the mold and the isothermal heat transfer device in thermal contact with the mold, the glass article, mold, and isothermal heat transfer device are transported along a thermally-graded channel to cool the glass article to a second temperature. During the transporting, the isothermal heat transfer device transfers heat from a relatively hot region of the mold to a relatively cold region of the mold.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventors: Nikolaos P. Kladias, Kenneth Spencer Morgan, Elias Panides, Rohit Rai, John R. Ridge, Ljerka Ukrainczyk
  • Publication number: 20140299300
    Abstract: A glass molding system and a method of making glass articles using the glass molding system are disclosed. The glass molding system includes an indexing table, a plurality of enclosures arranged along the indexing table, and a plurality of stations defined on the indexing table such that each of the stations is selectively indexable with any one of the enclosures. At least one radiant heater is arranged in at least one of the enclosures. A radiation reflector surface and a radiation emitter body are arranged in the at least one of the enclosures. The radiation emitter body is between the at least one radiant heater and the radiation reflector surface and has a first surface in opposing relation to the at least one radiant heater and a second surface in opposing relation to the radiation reflector surface.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 9, 2014
    Inventors: Darrel P Bailey, John Harold Brennan, Michael Joseph Dailey, JR., Scott Winfield Deming, Karl David Ehemann, Keith Raymond Gaylo, David Joseph Kuhn, Brian Christopher Sheehan, Ljerka Ukrainczyk, Kevin Lee Wasson
  • Publication number: 20140234581
    Abstract: A method of forming a shaped glass article includes placing a glass sheet on a mold such that a first glass area of the glass sheet corresponds to a first mold surface area of the mold and a second glass area of the glass sheet corresponds to a second mold surface area of the mold. The first glass area and the second glass area are heated such that the viscosity of the second glass area is 8 poise or more lower than the viscosity of the first glass area. A force is applied to the glass sheet to conform the glass sheet to the mold surface. During the heating of the second glass area, the first mold surface area is locally cooled to induce a thermal gradient on the mold.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 21, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Jacob Immerman, Thomas A. Keebler, John Robert Saltzer, JR., Ljerka Ukrainczyk
  • Publication number: 20140224958
    Abstract: A multi-layer coating for a glass-shaping mold is disclosed. The multi-layer coating may include a glass-contacting layer and a diffusion barrier layer. The glass-contacting layer may make contact with glass during glass-shaping and may include titanium oxide, aluminium oxide, or combinations thereof. The diffusion barrier layer may be positioned between the glass-contacting layer and a mold body and may restrict diffusion of base metals from the mold body to the glass-contacting layer and diffusion of glass materials from the glass-contacting layer to the mold body.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 14, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Jiangwei Feng, Lin Lin, Ljerka Ukrainczyk
  • Patent number: 8783066
    Abstract: A glass molding system and a method of making glass articles using the glass molding system are disclosed. The glass molding system includes an indexing table, a plurality of enclosures arranged along the indexing table, and a plurality of stations defined on the indexing table such that each of the stations is selectively indexable with any one of the enclosures. At least one radiant heater is arranged in at least one of the enclosures. A radiation reflector surface and a radiation emitter body are arranged in the at least one of the enclosures. The radiation emitter body is between the at least one radiant heater and the radiation reflector surface and has a first surface in opposing relation to the at least one radiant heater and a second surface in opposing relation to the radiation reflector surface.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: July 22, 2014
    Assignee: Corning Incorporated
    Inventors: Darrel P Bailey, John Harold Brennan, Michael Joseph Dailey, Jr., Scott Winfield Deming, Karl David Ehemann, Keith Raymond Gaylo, David Joseph Kuhn, Brian Christopher Sheehan, Ljerka Ukrainczyk, Kevin Lee Wasson, Yuriy Yurkovsky