Patents by Inventor Longzhou MA

Longzhou MA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11149343
    Abstract: Processes for refurbishing a spent sputtering target with a non-circular shape are disclosed. In one form, the processes include the steps of receiving one or more spent sputtering targets, inspecting and weighing the spent sputtering targets, removing any contaminants or other surface impurities from the spent sputtering target surfaces, preparing a hot press die with spacers, disposing the spent sputtering targets in the hot press die, the spacers used to center the spent sputtering targets therein, loading fresh metal refilling powder into the die to account for depleted regions of the spent sputtering targets to produce a powder-filled sputtering target, and applying sufficient heat and force to the filled sputtering target to produce a refurbished sputtering target with homogeneous composition and sufficient adhesion strength.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: October 19, 2021
    Assignee: Materion Corporation
    Inventors: Longzhou Ma, Xingbo Yang, Matthew J. Komertz, Arthur V. Testanero
  • Patent number: 10604836
    Abstract: Methods for finishing a sputtering target to reduce particulation and to reduce burn-in time are disclosed. The surface of the unfinished sputtering target is blasted with beads to remove machining-induced defects. Additional post-processing steps include dust blowing-off, surface wiping, dry ice blasting, removing moisture using hot air gun, and annealing, resulting in a homogeneous, ultra-clean, residual-stress-free, hydrocarbon chemicals-free surface.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: March 31, 2020
    Assignee: MATERION CORPORATION
    Inventors: Longzhou Ma, Xingbo Yang, Dejan Stojakovic, Arthur V. Testanero, Matthew J. Komertz
  • Patent number: 9834832
    Abstract: The present disclosure is directed and formulations and methods to provide alloys having relative high strength and ductility. The alloys may be provided in seamless tubular form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride pinning phases. In what is termed a Class 1 Steel the alloys indicate tensile strengths of 700 MPa to 1400 MPa and elongations of 10-70%. Class 2 Steel indicates tensile strengths of 800 MPa to 1800 MPa and elongations of 5-65%. Class 3 Steel indicates tensile strengths of 1000 MPa to 2000 MPa and elongations of 0.5-15%.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: December 5, 2017
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Sheng Cheng, Longzhou Ma, Jason K. Walleser, Grant G. Justice, Andrew T. Ball, Kurtis Clark, Scott Larish, Alissa Peterson, Patrick E. Mack, Brian D. Merkle, Brian D. Meacham, Alla V. Sergueeva
  • Publication number: 20160348231
    Abstract: Processes for refurbishing a spent sputtering target with a non-circular shape are disclosed. In one form, the processes include the steps of receiving one or more spent sputtering targets, inspecting and weighing the spent sputtering targets, removing any contaminants or other surface impurities from the spent sputtering target surfaces, preparing a hot press die with spacers, disposing the spent sputtering targets in the hot press die, the spacers used to center the spent sputtering targets therein, loading fresh metal refilling powder into the die to account for depleted regions of the spent sputtering targets to produce a powder-filled sputtering target, and applying sufficient heat and force to the filled sputtering target to produce a refurbished sputtering target with homogeneous composition and sufficient adhesion strength.
    Type: Application
    Filed: May 31, 2016
    Publication date: December 1, 2016
    Inventors: Longzhou Ma, Xingbo Yang, Matthew J. Komertz, Arthur V. Testanero
  • Publication number: 20160333461
    Abstract: Methods for finishing a sputtering target to reduce particulation and to reduce burn-in time are disclosed. The surface of the unfinished sputtering target is blasted with beads to remove machining-induced defects. Additional post-processing steps include dust blowing-off, surface wiping, dry ice blasting, removing moisture using hot air gun, and annealing, resulting in a homogeneous, ultra-clean, residual-stress-free, hydrocarbon chemicals-free surface.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 17, 2016
    Inventors: Longzhou Ma, Xingbo Yang, Dejan Stojakovic, Arthur V. Testanero, Matthew J. Komertz
  • Patent number: 9284635
    Abstract: This disclosure deals with a class of metal alloys with advanced property combinations applicable to metallic sheet production. More specifically, the present application identifies the formation of metal alloys of relatively high strength and ductility and the use of one or more cycles of elevated temperature treatment and cold deformation to produce metallic sheet at reduced thickness with relatively high strength and ductility.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: March 15, 2016
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Brian E. Meacham, Kurtis Clark, Longzhou Ma, Igor Yakubtsov, Scott Larish, Sheng Cheng, Taylor L. Giddens, Andrew E. Frerichs, Alla V. Sergueeva
  • Patent number: 9074273
    Abstract: The present disclosure is directed at metal alloys and methods of processing with application to slab casting methods and post-processing steps towards sheet production. The metals provide unique structure and exhibit advanced property combinations of high strength and/or high ductility.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: July 7, 2015
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Grant G. Justice, Andrew T. Ball, Jason K. Walleser, Brian E. Meacham, Kurtis Clark, Longzhou Ma, Igor Yakubtsov, Scott Larish, Sheng Cheng, Taylor L. Giddens, Andrew E. Frerichs, Alla V. Sergueeva
  • Publication number: 20150152534
    Abstract: The present disclosure is directed at metal alloys and methods of processing with application to slab casting methods and post-processing steps towards sheet production. The metals provide unique structure and exhibit advanced property combinations of high strength and/or high ductility.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 4, 2015
    Inventors: Daniel James BRANAGAN, Grant G. JUSTICE, Andrew T. BALL, Jason K. WALLESER, Brian E. MEACHAM, Kurtis CLARK, Longzhou MA, Igor YAKUBTSOV, Scott LARISH, Sheng CHENG, Taylor L. GIDDENS, Andrew E. FRERICHS, Alla V. SERGUEEVA
  • Publication number: 20150114587
    Abstract: The present disclosure is directed at metal alloys and methods of processing with application to slab casting methods and post-processing steps towards sheet production. The metals provide unique structure and exhibit advanced property combinations of high strength and/or high ductility.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Daniel James BRANAGAN, Grant G. JUSTICE, Andrew T. BALL, Jason K. WALLESER, Brian E. MEACHAM, Kurtis CLARK, Longzhou MA, Igor YAKUBTSOV, Scott Larish, Sheng CHENG, Taylor L. GIDDENS, Andrew E. FRERICHS, Alla V. SERGUEEVA
  • Publication number: 20150101714
    Abstract: This disclosure deals with a class of metal alloys with advanced property combinations applicable to metallic sheet production. More specifically, the present application identifies the formation of metal alloys of relatively high strength and ductility and the use of one or more cycles of elevated temperature treatment and cold deformation to produce metallic sheet at reduced thickness with relatively high strength and ductility.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Daniel James BRANAGAN, Grant G. JUSTICE, Andrew T. BALL, Jason K. WALLESER, Brian E. MEACHAM, Kurtis CLARK, Longzhou MA, Igor YAKUBTSOV, Scott Larish, Sheng CHENG, Taylor L. GIDDENS, Andrew E. FRERICHS, Alla V. SERGUEEVA
  • Publication number: 20150090372
    Abstract: This disclosure deals with a class of metal alloys with advanced property combinations applicable to metallic sheet production. More specifically, the present application identifies the formation of metal alloys of relatively high strength and ductility and the use of one or more cycles of elevated temperature treatment and cold deformation to produce metallic sheet at reduced thickness with relatively high strength and ductility.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Inventors: Daniel James BRANAGAN, Grant G. JUSTICE, Andrew T. BALL, Jason K. WALLESER, Brian E. MEACHAM, Kurtis CLARK, Longzhou MA, Igor YAKUBTSOV, Scott Larish, Sheng CHENG, Taylor L. GIDDENS, Andrew E. FRERICHS, Alla V. SERGUEEVA
  • Publication number: 20140190594
    Abstract: The present disclosure is directed and formulations and methods to provide alloys having relative high strength and ductility. The alloys may be provided in seamless tubular form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride pinning phases. In what is termed a Class 1 Steel the alloys indicate tensile strengths of 700 MPa to 1400 MPa and elongations of 10-70%. Class 2 Steel indicates tensile strengths of 800 MPa to 1800 MPa and elongations of 5-65%. Class 3 Steel indicates tensile strengths of 1000 MPa to 2000 MPa and elongations of 0.5-15%.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Inventors: Daniel James BRANAGAN, Sheng CHENG, Longzhou MA, Jason K. WALLESER, Grant G. JUSTICE, Andrew T. BALL, Kurtis CLARK, Scott LARISH, Alissa PETERSON, Patrick E. MACK, Brian D. MERKLE, Brian E. MEACHAM, Alla V. SERGUEEVA