Patents by Inventor Louis J. Spadaccini

Louis J. Spadaccini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8741029
    Abstract: A fuel deoxygenation system includes an oxygen permeable membrane having a porous membrane and an oleophobic layer. The porous membrane has pores that create a passage extending from a first side to an opposite second side of the porous membrane. The pores have an average pore diameter less than or equal to about 0.06 microns. The oleophobic layer and the porous membrane allow oxygen to cross the oxygen permeable membrane but substantially prevent fuel from crossing the oxygen permeable membrane. A method for removing dissolved oxygen from a fuel includes delivering fuel to an oxygen permeable membrane and removing oxygen from the fuel using the oxygen permeable membrane. A method for modifying a surface of a porous membrane includes depositing an oleophobic treatment agent on the porous membrane, removing solvent and heating the porous membrane to form an oleophobic layer on the porous membrane.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 3, 2014
    Assignee: United Technologies Corporation
    Inventors: Haralambos Cordatos, Louis J. Spadaccini, Thomas G. Tillman
  • Publication number: 20130000180
    Abstract: A fuel deoxygenation system includes an oxygen permeable membrane having a porous membrane and an oleophobic layer. The porous membrane has pores that create a passage extending from a first side to an opposite second side of the porous membrane. The pores have an average pore diameter less than or equal to about 0.06 microns. The oleophobic layer and the porous membrane allow oxygen to cross the oxygen permeable membrane but substantially prevent fuel from crossing the oxygen permeable membrane. A method for removing dissolved oxygen from a fuel includes delivering fuel to an oxygen permeable membrane and removing oxygen from the fuel using the oxygen permeable membrane. A method for modifying a surface of a porous membrane includes depositing an oleophobic treatment agent on the porous membrane, removing solvent and heating the porous membrane to form an oleophobic layer on the porous membrane.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Haralambos Cordatos, Louis J. Spadaccini, Thomas G. Tillman
  • Patent number: 8127829
    Abstract: A heat exchanger includes one or more passages and one or more metal foam sections adjacent the passage to promote an exchange of heat relative to the passage. The metal foam section includes a nominal thermal conductivity gradient there though to provide a desirable balance of heat exchange properties within the metal foam section.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: March 6, 2012
    Assignee: United Technologies Corporation
    Inventors: Daniel R. Sabatino, Scott F. Kaslusky, Hayden M. Reeve, Louis J. Spadaccini, Louis Chiappetta, He Huang, David R. Sobel
  • Patent number: 8070859
    Abstract: A non-porous membrane suitable for use in removing dissolved oxygen in a fuel deoxygenator device in an aircraft is produced by solvent casting. A first membrane layer is deposited on a substrate. A second membrane layer is deposited on top of the first membrane layer. Subsequent membrane layers may be deposited on top of the second membrane layer as desired. The resulting non-porous membrane allows little or no leaking of fuel across the membrane.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: December 6, 2011
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Zidu Ma, Louis J. Spadaccini, He Huang, Harry Cordatos, Foster Phillip Lamm, Ingo Pinnau
  • Patent number: 7824470
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with a multitude of flow impingement elements which are interleaved to provide a fuel channel with intricate two-dimensional flow characteristics. The flow impingement elements break up the boundary layers and enhance the transport of oxygen from the core of the of the fuel flow within the fuel channel to the oxygen permeable membrane surfaces by directing the fuel flow in a direction normal to the oxygen permeable membrane. The rapid mixing of the relatively rich oxygen core of the fuel with the relatively oxygen-poor flow near the oxygen permeable membrane enhances the overall removal rate of oxygen from the fuel. Because this process can be accomplished in fuel channels of relatively larger flow areas while maintaining laminar flow, the pressure drop sustained is relatively low.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 2, 2010
    Assignee: United Technologies Corporation
    Inventors: Louis Chiappetta, Louis J. Spadaccini, He Huang, Mallika Gummalla, Dochul Choi
  • Publication number: 20100218921
    Abstract: A heat exchanger includes one or more passages and one or more metal foam sections adjacent the passage to promote an exchange of heat relative to the passage. The metal foam section includes a nominal thermal conductivity gradient there though to provide a desirable balance of heat exchange properties within the metal foam section.
    Type: Application
    Filed: September 6, 2006
    Publication date: September 2, 2010
    Inventors: Daniel R. Sabatino, Scott F. Kaslusky, Hayden M. Reeve, Louis J. Spadaccini, Louis Chiappetta, He Huang, David R. Sobel
  • Publication number: 20100218512
    Abstract: A thermoelectric system (10) for pumping heat having at least one foam heat exchanger (45) is provided that enhances heat transfer away from the system (10) to increase overall system efficiency and performance of the system.
    Type: Application
    Filed: August 25, 2005
    Publication date: September 2, 2010
    Inventors: Abbas A Alahyari, Louis J. Spadaccini, Xiaomei Yu, Thomas H. Vanderspurt
  • Patent number: 7615104
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with an oxygen permeable membrane formed from a multiple of layers. The layers include a sealant layer, an oxygen permeability layer and a porous backing layer. The layered composite oxygen permeable membrane maximizes the oxygen transfer rate and minimizes the fuel leakage rate.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: November 10, 2009
    Assignees: United Technologies Corporation, Membrane Technology & Research, Inc.
    Inventors: Haralambos Cordatos, Louis J. Spadaccini, Ingo Pinnau
  • Patent number: 7582137
    Abstract: A device for use in a fluid system includes a flow perturbation element within a fluid channel. The flow perturbation element has a gas permeable surface for removing dissolved gas from passing fluid. A gas permeable membrane is coated on the gas permeable surface and allows the dissolved gas transport out of passing fluid into a gas-removal channel. The gas permeable membrane may be coated on the fuel perturbation elements using any of a variety of methods.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: September 1, 2009
    Assignee: United Technologies Corporation
    Inventors: Alexander G. Chen, Louis J. Spadaccini, Louis Chiappetta, Haralambos Cordatos
  • Publication number: 20080257146
    Abstract: A fuel system for a propulsion system includes a fuel deoxygenating device and a catalytic module containing catalytic materials. The fuel deoxygenating device removes dissolved oxygen from the fuel to prevent formation of insoluble materials that can potentially foul the catalyst and block desirable catalytic reactions that increase the usable cooling capacity of an endothermic fuel.
    Type: Application
    Filed: January 4, 2008
    Publication date: October 23, 2008
    Inventors: Louis J. Spadaccini, He Huang, David R. Sobel
  • Patent number: 7435283
    Abstract: A fuel stabilization system includes a first deoxygenator and a second deoxygenator both for removing dissolved oxygen from a hydrocarbon fuel. The first and second deoxygenators are arranged in parallel or series to sequentially remove a portion of dissolved oxygen from the hydrocarbon fuel. The arrangement of several deoxygenators for a single fuel stream improves removal of dissolved oxygen and provides for scalability of the fuel system to meet application specific demands. The arrangement also provides for the preservation of partial system functionality in the event of the failure of one of the deoxygenator modules.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: October 14, 2008
    Assignee: United Technologies Corporation
    Inventors: Thomas Gregory Tillman, Alexander G. Chen, Catalin G. Fotache, Louis J. Spadaccini, Foster Lamm, Zidu Ma, Lou Chiappetta, Charles C. Coffin, James A. Wilkinson, Brian Welch
  • Patent number: 7393388
    Abstract: A deoxygenator includes a plurality of permeable membranes spirally wound about an exhaust tube for removing dissolved oxygen from a hydrocarbon fuel. The permeable membrane is spirally wrapped about the exhaust tube and defines fuel passages and exhaust passages. The fuel passages and exhaust passages alternate such that each fuel passage is bounded on each adjacent side by an exhaust passage. An oxygen partial pressure differential is generated across the permeable membrane to draw dissolved oxygen from fuel in the fuel passage. The dissolved oxygen is then communicated through openings about the circumference of the exhaust tube and out the deoxygenator.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: July 1, 2008
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Harry Cordatos, Thomas Gregory Tillman, Alexander G. Chen, Louis Chiappetta, James R. Irish, Foster Phillip Lamm, Stephen R. Jones
  • Patent number: 7334407
    Abstract: A fuel system for a propulsion system includes a fuel deoxygenating device and a catalytic module containing catalytic materials. The fuel deoxygenating device removes dissolved oxygen from the fuel to prevent formation of insoluble materials that can potentially foul the catalyst and block desirable catalytic reactions that increase the usable cooling capacity of an endothermic fuel.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: February 26, 2008
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, He Huang, David R. Sobel
  • Publication number: 20080016846
    Abstract: A rocket engine combustion chamber wall operates as a heat exchange section through which the fuel passes in a heat exchange relationship. By first passing the fuel through a deoxygenator system fuel stabilization unit (FSU), oxygen is selectively removed such that the heat sink capacity of the fuel is increased which translates into an increased impulse power rocket engine.
    Type: Application
    Filed: July 18, 2006
    Publication date: January 24, 2008
    Inventor: Louis J. Spadaccini
  • Patent number: 7260926
    Abstract: A fuel based thermal management system includes a fuel stabilization system which permits the fuel to exceed the traditional coking temperatures. High temperature components are arranged along the fuel flow path such that even at the higher operating temperatures the fuel operates as a heat sink to transfer heat from high temperature components to the fuel. An optimal high temperature ester-based oil permits an oil-loop to exceed current oil temperature limits and achieve a high temperature to permit efficient rejection of heat to the fuel late in the fuel flow path.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: August 28, 2007
    Assignee: United Technologies Corporation
    Inventors: Daniel Sabatino, Louis J. Spadaccini, Scott Kaslusky
  • Patent number: 7231768
    Abstract: A fuel delivery system for a gas turbine engine includes a main fuel pump supplying fuel to a fuel-metering device. The operational flow range of the fuel system is dependent on a minimum net positive suction pressure at the main pump inlet required to prevent pump cavitation. A mixture of fuel and dissolved gases increases the minimum net positive suction pressure required to prevent cavitation. A fuel de-aerator including a permeable membrane removes dissolved gases from the fuel to eliminate formation of dissolved gases. The elimination of dissolved gases from within the liquid fuel reduces the required net positive suction pressure, enabling a greater operational flow range.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: June 19, 2007
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Scott Kaslusky, Robert A. McLaughlin
  • Patent number: 7231769
    Abstract: A cooling system for a gas turbine engine includes a fuel deoxygenator for increasing the cooling capacity of the fuel. The fuel deoxygenator removes dissolved gases from the fuel to prevent the formation of insoluble deposits. The prevention of insoluble deposits increases the usable cooling capacity of the fuel. The increased cooling capacity of the deoxygenated fuel provides a greater heat sink for cooling air used to protect engine components. The improved cooling capacity of the cooling air provides for increased engine operating temperatures that improves overall engine efficiency.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: June 19, 2007
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, He Huang, Luca Bertuccioli, Robert L. Bayt
  • Patent number: 7175693
    Abstract: A method for preventing fuel from migrating, i.e., infiltrating, into a mircoporous polymer membrane, such as that used in a fuel deoxygenator device of an aircraft to remove dissolved oxygen from the fuel, includes heating the membrane to reduce the size of micropores in the membrane from a first size to a second size that is large enough to allow migration of oxygen through the membrane and small enough to prevent migration of fuel into the membrane. The membrane is an amorphous fluoropolymer on a PVDF substrate and the micropores are reduced in size by heating the membrane at a temperature between 130° C. and 150° C. for 2 hours.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: February 13, 2007
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, He Huang, Foster Phillip Lamm
  • Patent number: 7153343
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with a porous membrane. The deoxygenator includes an oxygen receiving channel separated from the fuel channel by the porous membrane. The capillary forces counteract the pressure differential across the membrane, preventing any leakage of the fuel, while the oxygen concentration differential across the membrane allows for deoxygenation of the fuel through the porous membrane.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: December 26, 2006
    Assignee: United Technologies Corporation
    Inventors: Sergei F. Burlatsky, Mallika Gummalla, Louis J. Spadaccini, Foster Philip Lamm
  • Patent number: 7093437
    Abstract: A fuel delivery system for a gas turbine engine includes a main fuel pump supplying fuel to a fuel-metering device. The operational flow range of the fuel system is dependent on a minimum net positive suction pressure at the main pump inlet required to prevent pump cavitation. A mixture of fuel and dissolved gases increases the minimum net positive suction pressure required to prevent cavitation. A fuel de-aerator including a permeable membrane removes dissolved gases from the fuel to eliminate formation of dissolved gases. The elimination of dissolved gases from within the liquid fuel reduces the required net positive suction pressure, enabling a greater operational flow range.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: August 22, 2006
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Scott Kaslusky, Robert A. McLaughlin