Patents by Inventor Louis J. Spadaccini

Louis J. Spadaccini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6939392
    Abstract: A system for the management of thermal transfer in a gas turbine engine includes a heat generating sub-system in operable communication with the engine, a fuel source to supply a fuel, a fuel stabilization unit to receive the fuel from the fuel source and to provide the fuel to the engine, and a heat exchanger in thermal communication with the fuel to transfer heat from the heat generating sub-system to the fuel. A method of managing thermal transfer in an aircraft includes removing oxygen from a stream of a fuel fed to an engine used to drive the aircraft, transferring heat from a heat generating sub-system of the aircraft to the fuel, and combusting the fuel. A system for the thermal management of an aircraft provides for powering the aircraft, supplying a fuel deoxygenating the fuel, and transferring heat between a heat generating sub-system of the aircraft and the fuel.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: September 6, 2005
    Assignee: United Technologies Corporation
    Inventors: He Huang, Scott F. Kaslusky, Thomas G. Tillman, Timothy D. DeValve, Luca Bertuccioli, Michael K. Sahm, Louis J. Spadaccini, Robert L. Bayt, Foster Philip Lamm, Daniel R. Sabatino
  • Publication number: 20040194627
    Abstract: A system for the management of thermal transfer in a gas turbine engine includes a heat generating sub-system disposed in operable communication with the engine, a fuel source configured to supply a fuel, a fuel stabilization unit configured to receive the fuel from the fuel source and to provide the fuel to the engine, and a heat exchanger disposed in thermal communication with the fuel to effect the transfer of heat from the heat generating sub-system to the fuel. A method of managing thermal transfer in an aircraft includes removing oxygen from a stream of a fuel fed to an engine used to drive the aircraft, transferring heat from a heat generating sub-system of the aircraft to the fuel, and combusting the fuel.
    Type: Application
    Filed: September 8, 2003
    Publication date: October 7, 2004
    Applicant: United Technologies Corporation
    Inventors: He Huang, Scott F. Kaslusky, Thomas G. Tillman, Timothy D. DeValve, Luca Bertuccioli, Michael K. Sahm, Louis J. Spadaccini, Robert L. Bayt, Foster Philip Lamm, Daniel R. Sabatino
  • Patent number: 6709492
    Abstract: A fuel deoxygenator includes a plurality of fuel plates defining fuel passages through a housing. A permeable membrane supported by a porous substrate is in contact with fuel flowing through the fuel passages. A vacuum in communication with the porous substrate creates a differential pressure between oxygen within the fuel and the porous membrane. The oxygen partial pressure differential causes oxygen dissolved within the fuel to migrate from the fuel through the permeable membrane away from the fuel. Fuel exiting the outlet includes a substantially reduced amount of dissolved oxygen.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: March 23, 2004
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Steven Lozyniak, He Huang
  • Patent number: 6533924
    Abstract: A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted oxygenated hydrocarbon fuel stock supply which contains an oxygenate and which is used to power an internal combustion engine in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The fuel stock can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a nickel reactant desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the desulfurized organic remnants continue through the remainder of the fuel processing system. The method can be used to desulfurize either a liquid or a gaseous fuel stream, which contains an oxygenate such as MTBE, ethanol, methanol, or the like.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: March 18, 2003
    Assignee: UTC Fuel Cells, LLC
    Inventors: Roger R. Lesieur, Christopher Teeling, Joseph J. Sangiovanni, Laurence R. Boedeker, Zissis A. Dardas, He Huang, Jian Sun, Xia Tang, Louis J. Spadaccini
  • Publication number: 20030047490
    Abstract: A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted oxygenated hydrocarbon fuel stock supply which contains an oxygenate and which is used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the now desulfurized hydrocarbon fuel supply continues through the remainder of the fuel processing system. The method does not require the addition of steam or a hydrogen source to the fuel stream prior to the desulfurizing step.
    Type: Application
    Filed: February 19, 2002
    Publication date: March 13, 2003
    Inventors: Roger R. Lesieur, Christopher Teeling, Joseph J. Sangiovanni, Laurence R. Boedeker, Zissis A. Dardas, He Huang, Jian Sun, Xia Tang, Louis J. Spadaccini
  • Publication number: 20020139718
    Abstract: A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted oxygenated hydrocarbon fuel stock supply which contains an oxygenate and which is used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the now desulfurized hydrocarbon fuel supply continues through the remainder of the fuel processing system. The method does not require the addition of steam or a hydrogen source to the fuel stream prior to the desulfurizing step.
    Type: Application
    Filed: January 10, 2002
    Publication date: October 3, 2002
    Inventors: Roger R. Lesieur, Christopher Teeling, Joseph J. Sangiovanni, Laurence R. Boedeker, Zissis A. Dardas, He Huang, Jian Sun, Xia Tang, Louis J. Spadaccini
  • Patent number: 6454935
    Abstract: A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted oxygenated hydrocarbon fuel stock supply which contains an oxygenate and which is used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the now desulfurized hydrocarbon fuel supply continues through the remainder of the fuel processing system.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: September 24, 2002
    Assignee: UTC Fuel Cells, LLC
    Inventors: Roger R. Lesieur, Christopher Teeling, Joseph J. Sangiovanni, Laurence R. Boedeker, Zissis A. Dardas, He Huang, Jian Sun, Xia Tang, Louis J. Spadaccini
  • Publication number: 20020104781
    Abstract: A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted oxygenated hydrocarbon fuel stock supply which contains an oxygenate and which is used to power an internal combustion engine in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The fuel stock can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a nickel reactant desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the desulfurized organic remnants continue through the remainder of the fuel processing system. The method can be used to desulfurize either a liquid or a gaseous fuel stream, which contains an oxygenate such as MTBE, ethanol, methanol, or the like.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 8, 2002
    Inventors: Roger R. Lesieur, Christopher Teeling, Joseph J. Sangiovanni, Laurence R. Boedeker, Zissis A. Dardas, He Huang, Jian Sun, Xia Tang, Louis J. Spadaccini
  • Patent number: 6315815
    Abstract: Apparatus and method for the deoxygenation of liquid fuel in the fuel system of an energy conversion device, such as an aircraft gas turbine engine. A membrane filter is disposed in the fuel system and is selected to remove oxygen from the fuel, typically a hydrocarbon, while excluding the fuel. The membrane filter may be permeable or porous to the oxygen and, in a preferred embodiment, is of polytetraflouroethylene. Fuel with dissolved oxygen (typically from air) is flowed in contact with one surface of the membrane filter, and removed oxygen is collected from the opposite surface of the filter. The difference in the partial pressure of oxygen across the membrane filter may be controlled to regulate the driving force for moving oxygen through the membrane. Reduction of the oxygen concentration in jet fuel to less than 10 ppm at liquid space velocities of 100/hr and greater are attained.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: November 13, 2001
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Richard A. Meinzer, He Huang
  • Patent number: 5232672
    Abstract: An endothermic fuel system for cooling a heat source, which may be on a high speed vehicle, has an endothermic fuel decomposition catalyst which is capable of endothermically decomposing an endothermic fuel. The system also includes means for transferring thermal energy from the heat source to the catalyst in order to heat the catalyst to a temperature sufficient to endothermically decompose at least a portion of the endothermic fuel and to cool the heat source and means for contacting the heated catalyst with the endothermic fuel stream to cause the endothermic fuel stream to absorb the thermal energy and endothermically decompose into reaction products.
    Type: Grant
    Filed: July 24, 1992
    Date of Patent: August 3, 1993
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Pierre J. Marteney
  • Patent number: 5207053
    Abstract: A method of combusting an endothermic fuel with staged rich/lean combustion includes transferring thermal energy from a heat source, such as the wall of a rich combustor, to an endothermic fuel decomposition catalyst to cool the heat source and heat the fuel and catalyst to a temperature sufficient to endothermically decompose an endothermic fuel. The catalyst is contacted with the fuel to cause the fuel to decompose into a reaction product stream. The reaction product stream is mixed with a first air stream to form a first fuel/air mixture having an equivalence ratio greater than 1 and the first fuel/air mixture is combusted in a rich combustion stage to produce a combustion product stream. The combustion product stream is mixed with a second air stream to form a second fuel/air mixture having an equivalence ratio less than 1 and the second fuel/air mixture is combusted in a lean combustion stage to produce an exhaust gas stream containing decreased amounts of NO.sub.x.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: May 4, 1993
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Thomas J. Rosfjord
  • Patent number: 5176814
    Abstract: A heat source, may be on a high speed vehicle, may be cooled by transferring thermal energy from the heat source to an endothermic fuel decomposition catalyst in order to heat the catalyst to a temperature sufficient to crack or dissociate at least a portion of an endothermic fuel stream. The endothermic fuel is selected from the group consisting of normal paraffinic hydrocarbons and methanol. The heated endothermic fuel decomposition catalyst is contacted with the endothermic fuel stream at a liquid hourly space velocity of at least about 10 hr.sup.-1 to cause the endothermic fuel stream to crack or dissociate into a reaction product stream.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: January 5, 1993
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Pierre J. Marteney, Meredith B. Colket, III, Alvin B. Stiles
  • Patent number: 5165224
    Abstract: A method of combusting an endothermic fuel in a lean premixed/prevaporized combustion system includes transferring thermal energy from a combustion air stream to an endothermic fuel decomposition catalyst to cool the combustion air stream and heat the fuel and catalyst to a temperature sufficient to endothermically decompose an endothermic fuel. The catalyst is contacted with fuel to cause the fuel to endothermically decompose into a reaction product stream. The reaction product stream is mixed with the cooled combustion air stream to form a well-mixed, uniformly lean fuel/air mixture and the fuel/air mixture is combusted at an equivalence ratio of less than 1 to produce a combustion product stream. The invention also includes a system for practicing the method.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: November 24, 1992
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Arthur S. Kesten, Roy N. Guile
  • Patent number: 5151171
    Abstract: A heat source, which may be on a high speed vehicle, may be cooled by transferring thermal energy from the heat source to an endothermic fuel decomposition catalyst to heat the catalyst to a temperature sufficient to crack at least a portion of an endothermic fuel stream. The endothermic fuel is selected from the group consisting of isoparaffinic hydrocarbons, blends of normal and isoparaffinic hydrocarbons, and conventional aircraft turbine fuels. The heated endothermic fuel decomposition catalyst is contacted with the endothermic fuel stream at a liquid hourly space velocity of at least about 10 hr.sup.-1 to cause the endothermic fuel stream to crack into a reaction product stream.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: September 29, 1992
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Pierre J. Marteney, Meredith B. Colket, III
  • Patent number: 4726279
    Abstract: A supersonic combustion ram cannon (1) includes a conical projectile (8) with a flat base (9) which produces a subsonic wake (12) as it flies through a barrel (2). The projectile is configured to avoid a normal shock, relying instead on supersonic compression, combustion and gas expansion. The supersonic combustion of a fuel-oxidizer mixture around the tail of the subsonic wake, pressurizes the wake and drives the projectile forward. By utilizing wake stabilized supersonic combustion, the compression and combustion pressures can be matched to the limiting barrel working pressure, thereby providing for optimum thrust and maximum projectile acceleration.
    Type: Grant
    Filed: November 12, 1986
    Date of Patent: February 23, 1988
    Assignee: United Technologies Corporation
    Inventors: Charles E. Kepler, Raymond L. Deblois, Louis J. Spadaccini
  • Patent number: 4419863
    Abstract: Apparatus for mixing fuel and air for combustion in a gas turbine engine is disclosed. Various construction details capable of reducing pollutant emissions in the engine exhaust are discussed. In detailed form scoops 20 at the upstream end of the combustion chamber 12 provide uniform flow about the fuel nozzles. Deflectors 26 downstream of the fuel nozzles collimate the scooped air to aerodynamically confine the mixing fuel and air. Premature spreading of the fuel and air before nearly homogeneous fuel-air ratios are achieved is inhibited.
    Type: Grant
    Filed: September 30, 1981
    Date of Patent: December 13, 1983
    Assignee: United Technologies Corporation
    Inventors: Herman G. Dvorak, Robert D. Klapatch, Sid Russell, Louis J. Spadaccini
  • Patent number: 4226087
    Abstract: A flameholder of a burner for a gas turbine engine includes a discrete pattern of judiciously shaped apertures having projectiles in the form of cusps formed on the upstream face facing the airstream so as to improve the flameholder with a consequential reduction in the concentration level of gaseous pollutants.
    Type: Grant
    Filed: March 1, 1979
    Date of Patent: October 7, 1980
    Assignee: United Technologies Corporation
    Inventor: Louis J. Spadaccini