Patents by Inventor Luan C. Tran

Luan C. Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6834019
    Abstract: A memory device includes isolation devices located between memory cells. A plurality of isolation lines connects the isolation devices to a positive voltage during normal operations but still keeps the isolation devices in the off state to provide isolation between the memory cells. A current control circuit is placed between the isolation lines and a power node for reducing a current flowing between the isolation lines and the power node in case a deflect occurs at any one of isolation devices.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: December 21, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, Stephen R. Porter, Scot M. Graham, Steven E. Howell
  • Patent number: 6825077
    Abstract: The present invention includes a 6F2 DRAM array formed on a semiconductor substrate. The memory array includes a first memory cell. The first memory cell includes a first access transistor and a first data storage capacitor. A first load electrode of the first access transistor is coupled to the first data storage capacitor via a first storage node formed on the substrate. The memory array also includes a second memory cell. The second memory cell includes a second access transistor and a second data storage capacitor. A first load electrode of the second access transistor is coupled to the second data storage capacitor via a second storage node formed on the substrate. The first and second access transistors have a gate dielectric having a first thickness. The memory array further includes an isolation gate formed between the first and second storage nodes and configured to provide electrical isolation therebetween.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: November 30, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Publication number: 20040209421
    Abstract: Semiconductor processing methods of forming integrated circuitry are described. In one embodiment, memory circuitry and peripheral circuitry are formed over a substrate. The peripheral circuitry comprises first and second type MOS transistors. Second type halo implants are conducted into the first type MOS transistors in less than all of the peripheral MOS transistors of the first type. In another embodiment, a plurality of n-type transistor devices are formed over a substrate and comprise memory array circuitry and peripheral circuitry. At least some of the individual peripheral circuitry n-type transistor devices are partially masked, and a halo implant is conducted for unmasked portions of the partially masked peripheral circuitry n-type transistor devices. In yet another embodiment, at least a portion of only one of the source and drain regions is masked, and at least a portion of the other of the source and drains regions is exposed for at least some of the peripheral circuitry n-type transistor devices.
    Type: Application
    Filed: May 12, 2004
    Publication date: October 21, 2004
    Inventor: Luan C. Tran
  • Patent number: 6806123
    Abstract: The invention includes a DRAM array having a structure therein which includes a first material separated from a second material by an intervening insulative material. The first material is doped to at least 1×1017 atoms/cm3 with n-type and p-type dopant. The invention also includes a semiconductor construction in which a doped material is over a segment of a substrate. The doped material has a first type majority dopant therein, and is electrically connected with an electrical ground. A pair of conductively-doped diffusion regions are adjacent the segment, and spaced from one another by at least a portion of the segment. The conductively-doped diffusion regions have a second type majority dopant therein. The invention also encompasses methods of forming semiconductor constructions.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: October 19, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Mark McQueen, Luan C. Tran, Chandra Mouli
  • Patent number: 6806137
    Abstract: A memory device such as a 6F2 memory device includes isolation trenches that are formed generally parallel to and along associated strips of active area. A conductive bit line is recessed within each isolation trench such that the uppermost surface of the bit line is recessed below the uppermost surface of the base substrate. A bit line contact strap electrically couples the bit line to the active area both along a vertical dimension of the bit line strap and along a horizontal dimension across the uppermost surface of the base substrate.
    Type: Grant
    Filed: November 11, 2003
    Date of Patent: October 19, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, Mark Durcan, Howard C. Kirsch
  • Patent number: 6803278
    Abstract: The present invention includes a 6F2 DRAM array formed on a semiconductor substrate. The memory array includes a first memory cell. The first memory cell includes a first access transistor and a first data storage capacitor. A first load electrode of the first access transistor is coupled to the first data storage capacitor via a first storage node formed on the substrate. The memory array also includes a second memory cell. The second memory cell includes a second access transistor and a second data storage capacitor. A first load electrode of the second access transistor is coupled to the second data storage capacitor via a second storage node formed on the substrate. The first and second access transistors have a gate dielectric having a first thickness. The memory array further includes an isolation gate formed between the first and second storage nodes and configured to provide electrical isolation therebetween.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: October 12, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Publication number: 20040198004
    Abstract: A method for adjusting Vt while minimizing parasitic capacitance for low voltage high speed semiconductor devices. The method uses shadow effects and an angled punch through prevention implant between vertical structures to provide a graded implant. The implant angle is greater than or equal to arc tangent of S/H where S is the horizontal distance between, and H is the height of, such vertical structures.
    Type: Application
    Filed: April 26, 2004
    Publication date: October 7, 2004
    Inventor: Luan C. Tran
  • Publication number: 20040185630
    Abstract: This invention relates to a process of forming a transistor with three vertical gate electrodes and the resulting transistor. By forming such a transistor it is possible to maintain an acceptable aspect ratio as MOSFET structures are scaled down to sub-micron sizes. The transistor gate electrodes can be formed of different materials so that the workfunctions of the three electrodes can be tailored. The three electrodes are positioned over a single channel and operate as a single gate having outer and inner gate regions.
    Type: Application
    Filed: January 28, 2004
    Publication date: September 23, 2004
    Inventors: Leonard Forbes, Luan C. Tran, Kie Y. Ahn
  • Patent number: 6790663
    Abstract: Methods of forming contacts, methods of contacting lines, methods of operating integrated circuitry, and related integrated circuitry constructions are described. In one embodiment, a plurality of conductive lines are formed over a substrate and diffusion regions are formed within the substrate elevationally below the lines. The individual diffusion regions are disposed proximate individual conductive line portions and collectively define therewith individual contact pads with which electrical connection is desired. Insulative material is formed over the conductive line portions and diffusion regions, with contact openings being formed therethrough to expose portions of the individual contact pads. Conductive contacts are formed within the contact openings and in electrical connection with the individual contact pads. In a preferred embodiment, the substrate and diffusion regions provide a pn junction which is configured for biasing into a reverse-biased diode configuration.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: September 14, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Robert Kerr, Brian Shirley, Luan C. Tran, Tyler A. Lowrey
  • Patent number: 6784502
    Abstract: Methods of forming contacts, methods of contacting lines, methods of operating integrated circuitry, and related integrated circuitry constructions are described. In one embodiment, a plurality of conductive lines are formed over a substrate and diffusion regions are formed within the substrate elevationally below the lines. The individual diffusion regions are disposed proximate individual conductive line portions and collectively define therewith individual contact pads with which electrical connection is desired. Insulative material is formed over the conductive line portions and diffusion regions, with contact openings being formed therethrough to expose portions of the individual contact pads. Conductive contacts are formed within the contact openings and in electrical connection with the individual contact pads. In a preferred embodiment, the substrate and diffusion regions provide a pn junction which is configured for biasing into a reverse-biased diode configuration.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: August 31, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Robert Kerr, Brian Shirley, Luan C. Tran, Tyler A. Lowrey
  • Patent number: 6780728
    Abstract: The invention includes a semiconductor construction. The construction includes a semiconductive material having a surface and an opening extending through the surface. An electrically insulative liner is along a periphery of the opening. A mass comprising one or more of silicon, germanium, metal, metal silicide and dopant is within a bottom portion of the opening, and only partially fills the opening. The mass has a top surface. An electrically insulative material is within the opening and over the top surface of the mass. The top surface of the mass is at least about 200 Angstroms beneath the surface of the semiconductive material. The invention also includes methods of forming semiconductor constructions.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: August 24, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 6764934
    Abstract: Methods of forming contact openings, memory circuitry, and dynamic random access memory (DRAM) circuitry are described. In one implementation, an array of word lines and bit lines are formed over a substrate surface and separated by an intervening insulative layer. Conductive portions of the bit lines are outwardly exposed and a layer of material is formed over the substrate and the exposed conductive portions of the bit lines. Selected portions of the layer of material are removed along with portions of the intervening layer sufficient to (a) expose selected areas of the substrate surface and to (b) re-expose conductive portions of the bit lines. Conductive material is subsequently formed to electrically connect exposed substrate areas with associated conductive portions of individual bit lines.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: July 20, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Pai-Hung Pan, Luan C. Tran, Tyler A. Lowrey
  • Patent number: 6759288
    Abstract: An integrated circuit device with improved DRAM refresh characteristics, and a novel method of making the device, is provided. A semiconductor substrate is provided with gate structures formed on its surface in each of an array portion and a peripheral portion. Single lightly doped regions are formed adjacent to the channel regions by ion implantation in the substrate. Dielectric spacers having a first width are formed on the substrate surface adjacent to the gate structures covering at least a portion of the single lightly doped regions. Heavily-doped regions are ion-implanted on opposite sides of the gate structure in the peripheral portion. The dielectric spacers are etched back to a second width smaller than the first width. Double lightly doped regions are formed by ion implantation in the substrate in an area of the substrate left exposed by the spacer etch back.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: July 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Luan C. Tran, Mark McQueen, Robert Kerr
  • Patent number: 6756619
    Abstract: The invention includes a semiconductor construction having a pair of channel regions that have sub-regions doped with indium and surrounded by boron. A pair of transistor constructions are located over the channel regions and are separated by an isolation region. The transistors have gates that are wider than the underlying sub-regions. The invention also includes a semiconductor construction that has transistor constructions with insulative spacers along gate sidewalls. Each transistor construction is between a pair source/drain regions that extend beneath the spacers. A source/drain extension extends the source/drain region farther beneath the transistor constructions on only one side of each of the transistor constructions. The invention also includes methods of forming semiconductor constructions.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: June 29, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Patent number: 6753243
    Abstract: Methods of forming contact openings, memory circuitry, and dynamic random access memory (DRAM) circuitry are described. In one implementation, an array of word lines and bit lines are formed over a substrate surface and separated by an intervening insulative layer. Conductive portions of the bit lines are outwardly exposed and a layer of material is formed over the substrate and the exposed conductive portions of the bit lines. Selected portions of the layer of material are removed along with portions of the intervening layer sufficient to (a) expose selected areas of the substrate surface and to (b) re-expose conductive portions of the bit lines. Conductive material is subsequently formed to electrically connect exposed substrate areas with associated conductive portions of individual bit lines.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: June 22, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Pai-Hung Pan, Luan C. Tran, Tyler A. Lowrey
  • Patent number: 6747326
    Abstract: A method for adjusting Vt while minimizing parasitic capacitance for low voltage high speed semiconductor devices. The method uses shadow effects and an angled punch through prevention implant between vertical structures to provide a graded implant. The implant angle is greater than or equal to arc tangent of S/H where S is the horizontal distance between, and H is the height of, such vertical structures.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 8, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Luan C. Tran
  • Publication number: 20040106253
    Abstract: Semiconductor processing methods of forming integrated circuitry are described. In one embodiment, memory circuitry and peripheral circuitry are formed over a substrate. The peripheral circuitry comprises first and second type MOS transistors. Second type halo implants are conducted into the first type MOS transistors in less than all of the peripheral MOS transistors of the first type. In another embodiment, a plurality of n-type transistor devices are formed over a substrate and comprise memory array circuitry and peripheral circuitry. At least some of the individual peripheral circuitry n-type transistor devices are partially masked, and a halo implant is conducted for unmasked portions of the partially masked peripheral circuitry n-type transistor devices. In yet another embodiment, at least a portion of only one of the source and drain regions is masked, and at least a portion of the other of the source and drains regions is exposed for at least some of the peripheral circuitry n-type transistor devices.
    Type: Application
    Filed: July 11, 2003
    Publication date: June 3, 2004
    Inventor: Luan C. Tran
  • Publication number: 20040102003
    Abstract: The present invention includes a 6F2 DRAM array formed on a semiconductor substrate. The memory array includes a first memory cell. The first memory cell includes a first access transistor and a first data storage capacitor. A first load electrode of the first access transistor is coupled to the first data storage capacitor via a first storage node formed on the substrate. The memory array also includes a second memory cell. The second memory cell includes a second access transistor and a second data storage capacitor. A first load electrode of the second access transistor is coupled to the second data storage capacitor via a second storage node formed on the substrate. The first and second access transistors have a gate dielectric having a first thickness. The memory array further includes an isolation gate formed between the first and second storage nodes and configured to provide electrical isolation therebetween.
    Type: Application
    Filed: November 13, 2003
    Publication date: May 27, 2004
    Inventor: Luan C. Tran
  • Publication number: 20040094788
    Abstract: The invention includes a semiconductor construction having a pair of channel regions that have sub-regions doped with indium and surrounded by boron. A pair of transistor constructions are located over the channel regions and are separated by an isolation region. The transistors have gates that are wider than the underlying sub-regions. The invention also includes a semiconductor construction that has transistor constructions with insulative spacers along gate sidewalls. Each transistor construction is between a pair source/drain regions that extend beneath the spacers. A source/drain extension extends the source/drain region farther beneath the transistor constructions on only one side of each of the transistor constructions. The invention also includes methods of forming semiconductor constructions.
    Type: Application
    Filed: July 21, 2003
    Publication date: May 20, 2004
    Inventor: Luan C. Tran
  • Publication number: 20040097052
    Abstract: The invention includes a semiconductor construction having a pair of channel regions that have sub-regions doped with indium and surrounded by boron. A pair of transistor constructions are located over the channel regions and are separated by an isolation region. The transistors have gates that are wider than the underlying sub-regions. The invention also includes a semiconductor construction that has transistor constructions with insulative spacers along gate sidewalls. Each transistor construction is between a pair source/drain regions that extend beneath the spacers. A source/drain extension extends the source/drain region farther beneath the transistor constructions on only one side of each of the transistor constructions. The invention also includes methods of forming semiconductor constructions.
    Type: Application
    Filed: July 21, 2003
    Publication date: May 20, 2004
    Inventor: Luan C. Tran