Patents by Inventor Lubo Zhou

Lubo Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9518239
    Abstract: A process for the removal of sulfur compounds from a feed stream. A first separation zone removes sulfur compounds and produces a partially cleaned stream. A first adsorption zone adsorbs the remaining organic sulfur compounds on a regenerable adsorbent a produces a treated gas stream. A portion of the treated gas stream may regenerate the adsorbent in the first adsorption zone by removing organic sulfur compounds. The organic sulfur compound rich stream can be passed to a non-regenerable adsorption zone. The non-regenerable adsorption zone will separate out the organic sulfur compounds and provide a re-treated gas stream which may be recycled to a portion of the process. The non-regenerable adsorption zone may include regenerable adsorbent, but the zone is not operated to regenerate the adsorbent while it is in the non-regenerable adsorption zone.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 13, 2016
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Jayant Kumar Gorawara, Lubo Zhou
  • Patent number: 9505683
    Abstract: A process for treatment of a natural gas stream, or other methane containing stream that passes through a guard bed for removal of mercury and hydrolysis of COS, followed by treatment with an absorbent unit containing an amine solvent for removal of carbon dioxide and hydrogen sulfide. The gas is then dried by a molecular sieve bed. The regeneration gas for the molecular sieve adsorbent bed is chilled to remove liquid hydrocarbons and sulfur compounds. The process is accomplished without the use of an absorbent unit to remove the sulfur compounds.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: November 29, 2016
  • Publication number: 20160296878
    Abstract: Sour syngas treatment apparatuses and processes for treating a sour syngas stream are provided herein. In an embodiment, a process for treating a sour syngas stream that includes sulfur components and carbon dioxide includes absorbing the sulfur components and carbon dioxide from the sour syngas stream in a primary liquid/vapor phase absorption stage with a solvent to produce a liquid absorbent stream. The liquid absorbent stream includes the solvent, the sulfur components, and carbon dioxide. A portion of the sulfur components from the liquid absorbent stream is directly oxidized in the presence of a direct oxidation catalyst to produce elemental sulfur and a recycle stream. The recycle stream includes an unconverted portion of the sulfur components and carbon dioxide. The recycle stream is recycled for further absorption of the unconverted portion of the sulfur components and carbon dioxide through liquid/vapor phase absorption.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 13, 2016
    Inventors: Lubo Zhou, Bart Beuckels, Ernest James Boehm
  • Patent number: 9453174
    Abstract: Methods and apparatuses for removing impurities from a hydrocarbon stream are provided herein. In an embodiment, a method for removing impurities from a hydrocarbon stream includes providing the hydrocarbon stream that includes carbon dioxide in an amount of greater than about 50 ppm by mole. Carbon dioxide is selectively adsorbed from the hydrocarbon stream to produce a treated hydrocarbon stream that has less than or equal to 50 ppm by mole of carbon dioxide. The adsorbed carbon dioxide is desorbed to produce a raffinate stream that includes the carbon dioxide. The carbon dioxide is separated from the raffinate stream using a solvent separation technique to produce a treated raffinate stream.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: September 27, 2016
    Assignee: UOP LLC
    Inventors: Saadet Ulas Acikgoz, Shain Doong, Lubo Zhou, Bhargav Sharma
  • Publication number: 20160032206
    Abstract: A process for the removal of sulfur compounds from a feed stream. A first separation zone removes sulfur compounds and produces a partially cleaned stream. A first adsorption zone adsorbs the remaining organic sulfur compounds on a regenerable adsorbent a produces a treated gas stream. A portion of the treated gas stream may regenerate the adsorbent in the first adsorption zone by removing organic sulfur compounds. The organic sulfur compound rich stream can be passed to a non-regenerable adsorption zone. The non-regenerable adsorption zone will separate out the organic sulfur compounds and provide a re-treated gas stream which may be recycled to a portion of the process. The non-regenerable adsorption zone may include regenerable adsorbent, but the zone is not operated to regenerate the adsorbent while it is in the non-regenerable adsorption zone.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 4, 2016
    Inventors: Shain-Jer Doong, Jayant Kumar Gorawara, Lubo Zhou
  • Publication number: 20150376526
    Abstract: Methods and apparatuses for removing impurities from a hydrocarbon stream are provided herein. In an embodiment, a method for removing impurities from a hydrocarbon stream includes providing the hydrocarbon stream that includes carbon dioxide in an amount of greater than about 50 ppm by mole. Carbon dioxide is selectively adsorbed from the hydrocarbon stream to produce a treated hydrocarbon stream that has less than or equal to 50 ppm by mole of carbon dioxide. The adsorbed carbon dioxide is desorbed to produce a raffinate stream that includes the carbon dioxide. The carbon dioxide is separated from the raffinate stream using a solvent separation technique to produce a treated raffinate stream.
    Type: Application
    Filed: June 26, 2014
    Publication date: December 31, 2015
    Inventors: Saadet Ulas Acikgoz, Shain Doong, Lubo Zhou, Bhargav Sharma
  • Publication number: 20150375163
    Abstract: A low pressure re-absorber is integrated with a sulfur-rich solvent flash drum or a sulfur-rich solvent stripping column in a solvent acid gas removal process that provides for sufficient sulfur concentration for the downstream sulfur recovery unit. In another aspect of the invention, carbon dioxide containing or carbon dioxide rich gas streams that are at a lower temperature relative to a lean solvent stream are used to cool those lean solvent streams and then optionally to cool other process streams, to save energy consumption.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 31, 2015
    Inventors: Xiaoming Wen, Edward P. Zbacnik, Saadet Ulas Acikgoz, Lubo Zhou
  • Publication number: 20150367276
    Abstract: The invention provides a process and system for regenerating a solvent used to remove carbon dioxide from feed gases, such as natural gas and synthesis gas. The invention employs one or more hydraulic turbochargers to transfer energy from a higher energy solvent stream to a lower energy solvent stream. This energy is converted to electricity for use in powering parts of the process and system. This provides for a significant reduction in operating expenses.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 24, 2015
    Inventors: Lubo Zhou, William J. Lechnick, Michael R. Van de Cotte, Nagaraju Palla
  • Patent number: 9211494
    Abstract: A method of pretreating a natural gas stream for a floating liquefied natural gas plant is described. A natural gas feed stream is introduced into an amine absorption unit and a temperature swing adsorption unit located on a ship. The temperature swing adsorption unit has a dehydration cycle and a CO2 removal cycle. The amount of motion of the ship, or the level of CO2 in the natural gas feed stream with reduced contaminants, or both, is monitored. If the amount of motion of the ship or the level of CO2 in the natural gas feed stream with reduced contaminants exceeds a predetermined value, temperature swing adsorption unit is switched from the dehydration cycle to the CO2 removal cycle.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: December 15, 2015
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Shain Doong, Mark Schott
  • Patent number: 9138692
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 22, 2015
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Minkov, Lubo Zhou
  • Publication number: 20150251134
    Abstract: Methods and apparatuses are provided for removing impurities from a gas. A method includes feeding a gaseous stream through a vapor side of a first membrane contactor, and then feeding the gaseous stream through the vapor side of a second membrane contactor. An absorption solution is fed through an absorption side of the second membrane contactor, and then fed through an absorption side of the first membrane contactor. The absorption solution is cooled between the second membrane contactor and the first membrane contactor.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 10, 2015
    Applicant: UOP LLC
    Inventors: Saadet Ulas Acikgoz, George K. Xomeritakis, Lubo Zhou
  • Publication number: 20150111292
    Abstract: Embodiments of a process for discharging amine byproducts formed in an amine-based solvent are provided. The process comprises the steps of contacting the amine-based solvent with flue gas comprising carbon dioxide, oxygen, nitrogen, NOx, SOx, or mixtures thereof to form a carbon dioxide-laden amine-based solvent that contains the amine byproducts. Carbon dioxide is separated from the carbon dioxide-laden amine-based solvent to form a carbon dioxide-depleted amine-based solvent. The amine byproducts from the carbon dioxide-depleted amine-based solvent are fed to an algae source.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Applicant: UOP LLC
    Inventors: David W. Greer, Graham Ellis, Edward P. Zbacnik, Lubo Zhou
  • Publication number: 20150038759
    Abstract: The invention involves a process for treating a natural gas stream comprising sending the natural gas stream first to an adsorbent unit for removal of mercury. Then the gas stream is sent to an absorbent unit containing a chemical solvent and a physical solvent for removal of carbon dioxide, hydrogen sulfide, carbonyl sulfide and organic sulfur compounds to produce a partially purified natural gas stream. This stream is dehydrated and becomes the product stream. The partially purified natural gas stream to a dehydration unit to remove water to produce a natural gas product stream. The impurities absorbed by the absorption unit are removed and a liquid stream is separated that contains the sulfur impurities. This liquid stream may be purified and stabilized before being shipped for further treatment.
    Type: Application
    Filed: July 9, 2014
    Publication date: February 5, 2015
    Inventors: Shain-Jer Doong, Lubo Zhou
  • Patent number: 8931646
    Abstract: The present invention discloses a blends of an aromatic polyimide polymer and a polymer containing aromatic sulfonic acid groups that can be converted into polybenzoxazole (PBO) membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 13, 2015
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
  • Publication number: 20150000524
    Abstract: Vapor-liquid contacting apparatuses and methods for removing contaminants from gas streams are provided. In an embodiment, a vapor-liquid contacting apparatus includes a vortex contacting stage having a contacting zone bound by a wall and defining an axis, a radially inner region surrounding the axis, and a radially outer region adjacent the wall. The vapor-liquid contacting apparatus also includes a feed conduit configured to direct flow of a feed gas into the radially outer region of the contacting zone in a direction tangential to the axis to form a vortex. Further, the vapor-liquid contacting apparatus includes a liquid conduit configured to deliver a liquid absorbent stream to the radially inner region in the contacting zone.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Lev Davydov, Xiaoming Wen, Lubo Zhou
  • Patent number: 8915379
    Abstract: The present invention discloses a novel method to improve the selectivities of polybenzoxazole (PBO) membranes prepared from aromatic polyimide membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: December 23, 2014
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Raisa Minkov, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
  • Publication number: 20140357926
    Abstract: A process for treatment of a natural gas stream, or other methane containing stream that passes through a guard bed for removal of mercury and hydrolysis of COS, followed by treatment with an absorbent unit containing an amine solvent for removal of carbon dioxide and hydrogen sulfide. The gas is then dried by a molecular sieve bed. The regeneration gas for the molecular sieve adsorbent bed is chilled to remove liquid hydrocarbons and sulfur compounds. The process is accomplished without the use of an absorbent unit to remove the sulfur compounds.
    Type: Application
    Filed: May 21, 2014
    Publication date: December 4, 2014
  • Patent number: 8833742
    Abstract: An offshore co-current vapor-liquid contacting apparatus includes stages having contacting modules. Each contacting module includes a downcomer extending in a direction and has downcomer baffles distanced from each other in the direction to define downcomer cells within the downcomer. Each downcomer includes an outlet proximate to a co-current flow channel. A receiving pan extends substantially parallel to the downcomer and has receiving pan baffles distanced from each other in the direction to define receiving pan sections within the receiving pan. A vapor-liquid separation device has an inlet surface proximate to the co-current flow channel and an outlet surface above the receiving pan. Ducts are provided, with each duct having an upper end in fluid communication with a respective receiving pan section and a lower end in fluid communication with a selected downcomer cell in an immediately inferior stage.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 16, 2014
    Assignee: UOP LLC
    Inventors: Zhanping Xu, Lubo Zhou
  • Publication number: 20140224118
    Abstract: A method of pretreating a natural gas stream for a floating liquefied natural gas plant is described. A natural gas feed stream is introduced into an amine absorption unit and a temperature swing adsorption unit located on a ship. The temperature swing adsorption unit has a dehydration cycle and a CO2 removal cycle. The amount of motion of the ship, or the level of CO2 in the natural gas feed stream with reduced contaminants, or both, is monitored. If the amount of motion of the ship or the level of CO2 in the natural gas feed stream with reduced contaminants exceeds a predetermined value, temperature swing adsorption unit is switched from the dehydration cycle to the CO2 removal cycle.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Applicant: UOP LLC
    Inventors: Lubo Zhou, Shain Doong, Mark Schott
  • Patent number: 8685146
    Abstract: Processes and apparatuses are provided for preparing liquified natural gas from a natural gas feed that comprises C5 to C7 hydrocarbons and C8 or greater hydrocarbons. An exemplary process includes effecting the preferential adsorption of the C8 or greater hydrocarbons from the natural gas feed over adsorption of hydrocarbons having less than 8 carbon atoms to provide a C8-depleted natural gas stream. The process continues with effecting the preferential adsorption of the C5 to C7 hydrocarbons from the C8-depleted natural gas stream over adsorption of hydrocarbons having less than 5 carbon atoms to form a C5 to C8-depleted natural gas stream. The C5 to C7 hydrocarbons are preferentially adsorbed with higher selectivity and capacity than adsorption of the C5 to C7 hydrocarbons during preferentially adsorbing the C8 or greater hydrocarbons. The C5 to C8-depleted natural gas stream is then liquified.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: April 1, 2014
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Shain-Jer Doong, Bradley P. Russell, Henry Rastelli