Patents by Inventor Lubo Zhou
Lubo Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8127937Abstract: In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry.Type: GrantFiled: March 27, 2009Date of Patent: March 6, 2012Assignee: UOP LLCInventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
-
Publication number: 20110315010Abstract: The present invention relates to an integrated membrane/adsorbent process and system for removal of carbon dioxide from natural gas on a ship that houses natural gas purification equipment. Additional membrane units or adsorbent beds are used to reduce the amount of product gas that is lost in gas streams that are used to regenerate the adsorbent beds. These systems produce a product stream that meets the specifications of less than 50 parts per million carbon dioxide in natural gas for liquefaction.Type: ApplicationFiled: May 11, 2011Publication date: December 29, 2011Applicant: UOP LLCInventors: Shain-Jer Doong, Lubo Zhou, Dennis J. Bellville, Mark E. Schott, Leonid Bresler, John M. Foresman
-
Patent number: 8083834Abstract: The present invention discloses a new process of treating natural gas using high gas permeability polybenzoxazole polymer membranes operated at high temperatures that can provide sufficient dew point margin for the product gas. The high gas permeability polybenzoxazole polymer membranes can be used for a single stage membrane system or for the first stage membrane in a two stage membrane system for natural gas upgrading. Simulation study has demonstrated that a costly membrane pretreatment system such as a MemGuard™ system will not be required in the present new process. The new process can achieve significant capital cost saving and reduce the existing membrane footprint greater than 50%.Type: GrantFiled: May 7, 2008Date of Patent: December 27, 2011Assignee: UOP LLCInventors: Lubo Zhou, Chunqing Liu
-
Publication number: 20110290111Abstract: The present invention provides a process for treating a natural gas stream comprising sending a natural gas stream to at least one membrane unit to produce a permeate stream containing a higher concentration of carbon dioxide and a retentate stream containing a lower concentration of carbon dioxide. Then the retentate stream is sent to an adsorbent bed to remove carbon dioxide and other impurities to produce a natural gas product stream. The regeneration gas stream is sent through the molecular sieve adsorbent bed to desorb the carbon dioxide. In one process flow scheme, the regeneration stream is combined with the permeate stream from the membrane unit. Then the combined stream is sent to an absorbent column to remove carbon dioxide from the permeate stream to produce a second natural gas product stream. In the alternative flow scheme, a second membrane unit is used to improve efficiency.Type: ApplicationFiled: May 3, 2011Publication date: December 1, 2011Applicant: UOP LLCInventors: Stephen R. Dunne, Pamela J. Dunne, Lubo Zhou, Peter K. Coughlin
-
Publication number: 20110290110Abstract: The present invention provides a membrane/amine column system and process for removing acid gases from natural gas on a floating liquefied natural gas vessel. Several process configurations are provided to deal with a reduction in the effectiveness of the amine column by increasing the amount of acid gases being removed by the membrane system prior to the natural gas being sent to the amine column.Type: ApplicationFiled: April 21, 2011Publication date: December 1, 2011Applicant: UOP LLCInventors: Lubo Zhou, Xiaoming Wen
-
POLYMER MEMBRANES PREPARED FROM AROMATIC POLYIMIDE MEMBRANES BY THERMAL TREATING AND UV CROSSLINKING
Publication number: 20110278227Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.Type: ApplicationFiled: June 22, 2011Publication date: November 17, 2011Applicant: UOP LLCInventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Minkov, Lubo Zhou -
Publication number: 20110077312Abstract: The present invention discloses a novel method to improve the selectivities of polybenzoxazole (PBO) membranes prepared from aromatic polyimide membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.Type: ApplicationFiled: September 10, 2010Publication date: March 31, 2011Applicant: UOP LLCInventors: Chunqing Liu, Raisa Minkov, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
-
Publication number: 20110072973Abstract: The present invention discloses a blends of an aromatic polyimide polymer and a polymer containing aromatic sulfonic acid groups that can be converted into polybenzoxazole (PBO) membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.Type: ApplicationFiled: September 10, 2010Publication date: March 31, 2011Applicant: UOP LLCInventors: Chunqing Liu, Raisa Minkov, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
-
Publication number: 20100326913Abstract: The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes.Type: ApplicationFiled: September 10, 2010Publication date: December 30, 2010Applicant: UOP LLCInventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
-
Publication number: 20100331437Abstract: The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes.Type: ApplicationFiled: September 10, 2010Publication date: December 30, 2010Applicant: UOP LLCInventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
-
Publication number: 20100288701Abstract: The present invention involves the use of a multi-stage membrane system for gas, vapor, and liquid separations. In this multi-stage membrane system, high selectivity and high permeance or at least high selectivity polybenzoxazole membranes or cross-linked polybenzoxazole membranes are applied for a pre-membrane or both the pre-membrane and the secondary membrane. A primary membrane can be from conventional glassy polymers. This multi-stage membrane system can reduce inter-stage compression cost, increase product recovery and product purity for gas, vapor, and liquid separations. It can also save the cost compared to the system using all the high cost polybenzoxazole membranes or cross-linked polybenzoxazole membranes.Type: ApplicationFiled: May 12, 2009Publication date: November 18, 2010Inventors: Lubo Zhou, Chunqing Liu, Carlos A. Cabrera, Peter K. Coughlin
-
Patent number: 7810652Abstract: The present invention discloses a novel method to improve the selectivities of polybenzoxazole (PBO) membranes prepared from aromatic polyimide membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.Type: GrantFiled: September 25, 2009Date of Patent: October 12, 2010Assignee: UOP LLCInventors: Chunqing Liu, Raisa Minkov, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
-
Publication number: 20100243567Abstract: The present invention discloses a new type of high performance polymer membranes derived from aromatic polyimide membranes and methods for making and using these membranes. The polymer membranes described in the present invention were derived from aromatic polyimide membranes by crosslinking followed by thermal treating. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The high performance polymer membranes showed significantly improved permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The high performance polymer membranes also showed significantly improved selectivity for gas separations compared to the thermal-treated but non-UV-crosslinked aromatic polyimide membranes.Type: ApplicationFiled: March 27, 2009Publication date: September 30, 2010Inventors: Chunqing Liu, Raisa Serbayeva, Man-Wing Tang, Lubo Zhou, Peter K. Coughlin
-
Publication number: 20100133186Abstract: In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry.Type: ApplicationFiled: March 27, 2009Publication date: June 3, 2010Inventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
-
Publication number: 20100133171Abstract: The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 300° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite.Type: ApplicationFiled: March 27, 2009Publication date: June 3, 2010Inventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
-
Publication number: 20100135881Abstract: A process is provided for the simultaneous removal of carbon dioxide and sulfur oxides from a flue gas stream by a potassium carbonate solvent. As a part of the regeneration of the contaminated stream, a portion of that stream is removed and cooled to allow for filtration of potassium sulfate, the reaction product of the solvent and the sulfur oxides.Type: ApplicationFiled: July 28, 2009Publication date: June 3, 2010Inventors: Lubo Zhou, Dennis J. Bellville, Edward P. Zbacnik
-
Publication number: 20100133190Abstract: The present invention discloses a novel method to improve the selectivities of polybenzoxazole (PBO) membranes prepared from aromatic polyimide membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.Type: ApplicationFiled: September 25, 2009Publication date: June 3, 2010Applicant: UOP LLCInventors: Chunqing Liu, Raisa Minkov, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
-
Publication number: 20100133188Abstract: The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes.Type: ApplicationFiled: June 25, 2009Publication date: June 3, 2010Inventors: Chunqing Liu, Raisa Minkov, Syed A. Faheem, Man-Wing Tang, Lubo Zhou, Jeffery C. Bricker
-
Polymer Membranes Prepared from Aromatic Polyimide Membranes by Thermal Treating and UV Crosslinking
Publication number: 20100133192Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.Type: ApplicationFiled: March 27, 2009Publication date: June 3, 2010Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou -
Publication number: 20100133187Abstract: The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 200° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite.Type: ApplicationFiled: March 27, 2009Publication date: June 3, 2010Inventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou