Patents by Inventor Lubomyr T. Romankiw

Lubomyr T. Romankiw has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10971576
    Abstract: An on-chip magnetic structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: April 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 10811547
    Abstract: A chalcogen-resistant material including at least one of a conductive elongated nanostructure layer and a high work function material layer is deposited on a transition metal layer on a substrate. A semiconductor chalcogenide material layer is deposited over the chalcogen-resistant material. The conductive elongated nanostructures, if present, can reduce contact resistance by providing direct electrically conductive paths from the transition metal layer through the chalcogen-resistant material and to the semiconductor chalcogenide material. The high work function material layer, if present, can reduce contact resistance by blocking chalcogenization of the transition metal in the transition metal layer. Reduction of the contact resistance can enhance efficiency of a solar cell including the chalcogenide semiconductor material.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: October 20, 2020
    Assignee: International Business Machines Corporation
    Inventors: Shafaat Ahmed, Hariklia Deligianni, Lubomyr T. Romankiw
  • Patent number: 10784045
    Abstract: A technique relates to a method of forming a laminated multilayer magnetic structure. An adhesion layer is deposited on a substrate. A magnetic seed layer is deposited on top of the adhesion layer. Magnetic layers and non-magnetic spacer layers are alternatingly deposited such that an even number of the magnetic layers is deposited while an odd number of the non-magnetic spacer layers is deposited. The odd number is one less than the even number. Every two of the magnetic layers is separated by one of the non-magnetic spacer layers. The first of the magnetic layers is deposited on the magnetic seed layer, and the magnetic layers each have a thickness less than 500 nanometers.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 22, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Sathana Kitayaporn, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Joonah Yoon
  • Patent number: 10763038
    Abstract: A technique relates to a method of forming a laminated multilayer magnetic structure. An adhesion layer is deposited on a substrate. A magnetic seed layer is deposited on top of the adhesion layer. Magnetic layers and non-magnetic spacer layers are alternatingly deposited such that an even number of the magnetic layers is deposited while an odd number of the non-magnetic spacer layers is deposited. The odd number is one less than the even number. Every two of the magnetic layers is separated by one of the non-magnetic spacer layers. The first of the magnetic layers is deposited on the magnetic seed layer, and the magnetic layers each have a thickness less than 500 nanometers.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: September 1, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Sathana Kitayaporn, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Joonah Yoon
  • Patent number: 10577692
    Abstract: A method of electrolessly plating an iron-based substrate, including immersing an iron-based substrate in an acidic solution, immersing the iron-based substrate in a basic complexing solution, immersing the iron-based substrate in a catalytic metal solution including a catalytic metal, and immersing the iron-based substrate in an electroless nickel plating solution or an electroless cobalt plating solution.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: March 3, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Doreen D. DiMilia, Yu Luo, Janusz J. Nowak, Lubomyr T. Romankiw
  • Publication number: 20180348259
    Abstract: A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.
    Type: Application
    Filed: July 20, 2018
    Publication date: December 6, 2018
    Applicant: International Business Machines Corporation
    Inventors: Bing Dang, John Knickerbocker, Yang Liu, Maurice Mason, Lubomyr T. Romankiw
  • Patent number: 10132836
    Abstract: A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.
    Type: Grant
    Filed: May 9, 2015
    Date of Patent: November 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bing Dang, John Knickerbocker, Yang Liu, Maurice Mason, Lubomyr T. Romankiw
  • Patent number: 10043607
    Abstract: Present disclosure relates to magnetic materials, chips having magnetic materials, and methods of forming magnetic materials. In certain embodiments, magnetic materials may include a seed layer, and a cobalt-based alloy formed on seed layer. The seed layer may include copper, cobalt, nickel, platinum, palladium, ruthenium, iron, nickel alloy, cobalt-iron-boron alloy, nickel-iron alloy, and any combination of these materials. In certain embodiments, the chip may include one or more on-chip magnetic structures. Each on-chip magnetic structure may include a seed layer, and a cobalt-based alloy formed on seed layer. In certain embodiments, method may include: placing a seed layer in an aqueous electroless plating bath to form a cobalt-based alloy on seed layer. In certain embodiments, the aqueous electroless plating bath may include sodium tetraborate, an alkali metal tartrate, ammonium sulfate, cobalt sulfate, ferric ammonium sulfate and sodium borohydride and has a pH between about 9 to about 13.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Yu Luo, Lubomyr T. Romankiw, Joonah Yoon
  • Publication number: 20180187309
    Abstract: A method of electrolessly plating an iron-based substrate, including immersing an iron-based substrate in an acidic solution, immersing the iron-based substrate in a basic complexing solution, immersing the iron-based substrate in a catalytic metal solution including a catalytic metal, and immersing the iron-based substrate in an electroless nickel plating solution or an electroless cobalt plating solution.
    Type: Application
    Filed: January 5, 2017
    Publication date: July 5, 2018
    Inventors: Doreen D. DiMilia, Yu Luo, Janusz J. Nowak, Lubomyr T. Romankiw
  • Patent number: 10002919
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: June 19, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9929209
    Abstract: A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: March 27, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb
  • Publication number: 20180076275
    Abstract: An on-chip magnetic structure structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 15, 2018
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9887146
    Abstract: In one embodiment, the invention is a method and apparatus for chip cooling. One embodiment of an apparatus for cooling a heat-generating device includes an inlet for receiving a fluid, a manifold comprising a plurality of apertures formed therein for decreasing the pressure of the fluid from a first pressure by adiabatic expansion for impinging the fluid on the heat-generating device once the pressure of the fluid is decreased from the first pressure.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Matteo Flotta, Yves C. Martin, Lubomyr T. Romankiw, Theodore G. van Kessel
  • Publication number: 20180012953
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: September 7, 2017
    Publication date: January 11, 2018
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Patent number: 9865673
    Abstract: An on-chip magnetic structure includes a magnetic material comprising cobalt in a range from about 80 to about 90 atomic % (at. %) based on the total number of atoms of the magnetic material, tungsten in a range from about 4 to about 9 at. % based on the total number of atoms of the magnetic material, phosphorous in a range from about 7 to about 15 at. % based on the total number of atoms of the magnetic material, and palladium substantially dispersed throughout the magnetic material.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: January 9, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Andrew J. Kellock, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170316855
    Abstract: Present disclosure relates to magnetic materials, chips having magnetic materials, and methods of forming magnetic materials. In certain embodiments, magnetic materials may include a seed layer, and a cobalt-based alloy formed on seed layer. The seed layer may include copper, cobalt, nickel, platinum, palladium, ruthenium, iron, nickel alloy, cobalt-iron-boron alloy, nickel-iron alloy, and any combination of these materials. In certain embodiments, the chip may include one or more on-chip magnetic structures. Each on-chip magnetic structure may include a seed layer, and a cobalt-based alloy formed on seed layer. In certain embodiments, method may include: placing a seed layer in an aqueous electroless plating bath to form a cobalt-based alloy on seed layer. In certain embodiments, the aqueous electroless plating bath may include sodium tetraborate, an alkali metal tartrate, ammonium sulfate, cobalt sulfate, ferric ammonium sulfate and sodium borohydride and has a pH between about 9 to about 13.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 2, 2017
    Inventors: HARIKLIA DELIGIANNI, WILLIAM J. GALLAGHER, YU LUO, LUBOMYR T. ROMANKIW, JOONAH YOON
  • Publication number: 20170314136
    Abstract: Present disclosure relates to magnetic materials, chips having magnetic materials, and methods of forming magnetic materials. In certain embodiments, magnetic materials may include a seed layer, and a cobalt-based alloy formed on seed layer. The seed layer may include copper, cobalt, nickel, platinum, palladium, ruthenium, iron, nickel alloy, cobalt-iron-boron alloy, nickel-iron alloy, and any combination of these materials. In certain embodiments, the chip may include one or more on-chip magnetic structures. Each on-chip magnetic structure may include a seed layer, and a cobalt-based alloy formed on seed layer. In certain embodiments, method may include: placing a seed layer in an aqueous electroless plating bath to form a cobalt-based alloy on seed layer. In certain embodiments, the aqueous electroless plating bath may include sodium tetraborate, an alkali metal tartrate, ammonium sulfate, cobalt sulfate, ferric ammonium sulfate and sodium borohydride and has a pH between about 9 to about 13.
    Type: Application
    Filed: April 13, 2017
    Publication date: November 2, 2017
    Inventors: HARIKLIA DELIGIANNI, WILLIAM J. GALLAGHER, YU LUO, LUBOMYR T. ROMANKIW, JOONAH YOON
  • Patent number: 9793336
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSIENSS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170229533
    Abstract: An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.
    Type: Application
    Filed: January 20, 2017
    Publication date: August 10, 2017
    Inventors: Hariklia Deligianni, William J. Gallagher, Maurice Mason, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang
  • Publication number: 20170200766
    Abstract: A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.
    Type: Application
    Filed: January 25, 2017
    Publication date: July 13, 2017
    Inventors: Philipp Herget, Eugene J. O'Sullivan, Lubomyr T. Romankiw, Naigang Wang, Bucknell C. Webb