Patents by Inventor Luc Albarede

Luc Albarede has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9548189
    Abstract: A substrate etching system includes an etching control module, a filtering module, and an endpoint module. The etching control module selectively begins plasma etching of a substrate within an etching chamber. The filtering module, during the plasma etching of the substrate: receives a signal including endpoint information; decomposes the signal using empirical mode decomposition (EMD); and generates a filtered signal based on results of the EMD. The endpoint module indicates when an endpoint of the plasma etching of the substrate has been reached based on the filtered signal. The etching control module ends the plasma etching of the substrate in response to the indication that the endpoint of the plasma etching of the substrate has been reached.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: January 17, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Luc Albarede, Yassine Kabouzi, Jorge Luque, Andrew D. Bailey, III
  • Publication number: 20160314943
    Abstract: A substrate etching system includes an etching control module, a filtering module, and an endpoint module. The etching control module selectively begins plasma etching of a substrate within an etching chamber. The filtering module, during the plasma etching of the substrate: receives a signal including endpoint information; decomposes the signal using empirical mode decomposition (EMD); and generates a filtered signal based on results of the EMD. The endpoint module indicates when an endpoint of the plasma etching of the substrate has been reached based on the filtered signal. The etching control module ends the plasma etching of the substrate in response to the indication that the endpoint of the plasma etching of the substrate has been reached.
    Type: Application
    Filed: April 23, 2015
    Publication date: October 27, 2016
    Inventors: Luc Albarede, Yassine Kabouzi, Jorge Luque, Andrew D. Bailey, III
  • Publication number: 20160307738
    Abstract: A plasma system includes an RF generator and a matchbox including an impedance matching circuit, which is coupled to the RF generator via an RF cable. The plasma system includes a chuck and a plasma reactor coupled to the matchbox via an RF line. The RF line forms a portion of an RF supply path, which extends between the RF generator through the matchbox, and to the chuck. The plasma system further includes a phase adjusting circuit coupled to the RF supply path between the impedance matching circuit and the chuck. The phase adjusting circuit has an end coupled to the RF supply path and another end that is grounded. The plasma system includes a controller coupled to the phase adjusting circuit. The controller is used for changing a parameter of the phase adjusting circuit to control an impedance of the RF supply path based on a tune recipe.
    Type: Application
    Filed: June 27, 2016
    Publication date: October 20, 2016
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Ken Lucchesi, Luc Albarede
  • Publication number: 20160233058
    Abstract: A system for controlling an impedance of a radio frequency (RF) return path includes a matchbox further including a match circuitry. The system further includes an RF generator coupled to the matchbox to supply an RF supply signal to the matchbox via a first portion of an RF supply path. The RF generator is coupled to the matchbox to receive an RF return signal via a first portion of an RF return path. The system also includes a switch circuit and a plasma reactor coupled to the switch circuit via a second portion of the RF return path. The plasma reactor is coupled to the match circuitry via a second portion of the RF supply path. The system includes a controller coupled to the switch circuit, the controller configured to control the switch circuit based on a tune recipe to change an impedance of the RF return path.
    Type: Application
    Filed: April 19, 2016
    Publication date: August 11, 2016
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Ken Lucchesi, Luc Albarede
  • Patent number: 9401264
    Abstract: A plasma system includes an RF generator and a matchbox including an impedance matching circuit, which is coupled to the RF generator via an RF cable. The plasma system includes a chuck and a plasma reactor coupled to the matchbox via an RF line. The RF line forms a portion of an RF supply path, which extends between the RF generator through the matchbox, and to the chuck. The plasma system further includes a phase adjusting circuit coupled to the RF supply path between the impedance matching circuit and the chuck. The phase adjusting circuit has an end coupled to the RF supply path and another end that is grounded. The plasma system includes a controller coupled to the phase adjusting circuit. The controller is used for changing a parameter of the phase adjusting circuit to control an impedance of the RF supply path based on a tune recipe.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: July 26, 2016
    Assignee: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Ken Lucchesi, Luc Albarede
  • Patent number: 9337000
    Abstract: A system for controlling an impedance of a radio frequency (RF) return path includes a matchbox further including a match circuitry. The system further includes an RF generator coupled to the matchbox to supply an RF supply signal to the matchbox via a first portion of an RF supply path. The RF generator is coupled to the matchbox to receive an RF return signal via a first portion of an RF return path. The system also includes a switch circuit and a plasma reactor coupled to the switch circuit via a second portion of the RF return path. The plasma reactor is coupled to the match circuitry via a second portion of the RF supply path. The system includes a controller coupled to the switch circuit, the controller configured to control the switch circuit based on a tune recipe to change an impedance of the RF return path.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: May 10, 2016
    Assignee: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Ken Lucchesi, Luc Albarede
  • Patent number: 9119283
    Abstract: Systems and methods for performing chamber matching are described. One of the methods for performing chamber matching includes executing a first test within a first plasma chamber to measure a variable and executing a second test within a second plasma chamber to measure the variable. The first and second tests are executed based on one recipe. The method further includes determining a first relationship between the variable measured with the first test and power provided during the first test, determining a second relationship between the variable measured with the second test and power provided during the second test, and identifying power adjustment to apply to the second plasma chamber during a subsequent processing operation based on the first and second relationships. The power adjustment causes the second plasma chamber to perform the processing operation in a processing condition determined using the first plasma chamber.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: August 25, 2015
    Assignee: Lam Research Corporation
    Inventor: Luc Albarede
  • Patent number: 9107284
    Abstract: Systems and methods for compensating for harmonics produced during plasma processing in a plasma chamber are described. One of the methods includes retrieving a measurement of a combined waveform. The combined waveform includes a fundamental waveform and a harmonic waveform. The combined waveform defines a voltage proximate to a surface of a chuck, which is coupled to a radio frequency (RF) transmission line. The RF transmission line is coupled to an impedance matching circuit. The impedance matching circuit is coupled to an RF generator. The method further includes extracting the fundamental waveform from the combined waveform, determining a difference between a magnitude of the combined waveform and a magnitude of the fundamental waveform, and controlling the RF generator to compensate for the difference.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 11, 2015
    Assignee: Lam Research Corporation
    Inventor: Luc Albarede
  • Publication number: 20150091441
    Abstract: A plasma system includes an RF generator and a matchbox including an impedance matching circuit, which is coupled to the RF generator via an RF cable. The plasma system includes a chuck and a plasma reactor coupled to the matchbox via an RF line. The RF line forms a portion of an RF supply path, which extends between the RF generator through the matchbox, and to the chuck. The plasma system further includes a phase adjusting circuit coupled to the RF supply path between the impedance matching circuit and the chuck. The phase adjusting circuit has an end coupled to the RF supply path and another end that is grounded. The plasma system includes a controller coupled to the phase adjusting circuit. The controller is used for changing a parameter of the phase adjusting circuit to control an impedance of the RF supply path based on a tune recipe.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Ken Lucchesi, Luc Albarede
  • Publication number: 20150091440
    Abstract: A system for controlling an impedance of a radio frequency (RF) return path includes a matchbox further including a match circuitry. The system further includes an RF generator coupled to the matchbox to supply an RF supply signal to the matchbox via a first portion of an RF supply path. The RF generator is coupled to the matchbox to receive an RF return signal via a first portion of an RF return path. The system also includes a switch circuit and a plasma reactor coupled to the switch circuit via a second portion of the RF return path. The plasma reactor is coupled to the match circuitry via a second portion of the RF supply path. The system includes a controller coupled to the switch circuit, the controller configured to control the switch circuit based on a tune recipe to change an impedance of the RF return path.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Ken Lucchesi, Luc Albarede
  • Patent number: 8894804
    Abstract: An arrangement within a plasma reactor for detecting a plasma unconfinement event is provided. The arrangement includes a sensor, which is a capacitive-based sensor implemented within the plasma reactor. The sensor is implemented outside of a plasma confinement region and is configured to produce a transient current when the sensor is exposed to plasma associated with the plasma unconfinement event. The sensor has at least one electrically insulative layer oriented toward the plasma associated with the plasma unconfined event. The arrangement also includes a detection circuit, which is electrically connected to the sensor for converting the transient current into a transient voltage signal and for processing the transient voltage signal to ascertain whether the plasma unconfinement event exists.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: November 25, 2014
    Assignee: Lam Research Corporation
    Inventors: Jean-Paul Booth, Alexei Marakhtanov, Rajinder Dhindsa, Luc Albarede, Seyed Jafar Jafarian-Tehrani
  • Publication number: 20140265833
    Abstract: Systems and methods for compensating for harmonics produced during plasma processing in a plasma chamber are described. One of the methods includes retrieving a measurement of a combined waveform. The combined waveform includes a fundamental waveform and a harmonic waveform. The combined waveform defines a voltage proximate to a surface of a chuck, which is coupled to a radio frequency (RF) transmission line. The RF transmission line is coupled to an impedance matching circuit. The impedance matching circuit is coupled to an RF generator. The method further includes extracting the fundamental waveform from the combined waveform, determining a difference between a magnitude of the combined waveform and a magnitude of the fundamental waveform, and controlling the RF generator to compensate for the difference.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventor: Luc Albarede
  • Publication number: 20140265851
    Abstract: Systems and methods for performing chamber matching are described. One of the methods for performing chamber matching includes executing a first test within a first plasma chamber to measure a variable and executing a second test within a second plasma chamber to measure the variable. The first and second tests are executed based on one recipe. The method further includes determining a first relationship between the variable measured with the first test and power provided during the first test, determining a second relationship between the variable measured with the second test and power provided during the second test, and identifying power adjustment to apply to the second plasma chamber during a subsequent processing operation based on the first and second relationships. The power adjustment causes the second plasma chamber to perform the processing operation in a processing condition determined using the first plasma chamber.
    Type: Application
    Filed: May 23, 2013
    Publication date: September 18, 2014
    Inventor: Luc Albarede
  • Patent number: 8618807
    Abstract: A method for detecting an in-situ fast transient event within a processing chamber during substrate processing is provided. The method includes a set of sensors comparing a data set to a set of criteria (in-situ fast transient events) to determine if the first data set includes a potential in-situ fast transient event. If the first data set includes the potential in-situ fast transient event, the method also includes saving an electrical signature that occurs in a time period during which the potential in-situ fast transient event occurs. The method further includes comparing the electrical signature against a set of stored arc signatures. If a match is determined, the method yet also includes classifying the electrical signature as a first in-situ fast transient event and determining a severity level for the first in-situ fast transient event based on a predefined set of threshold ranges.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: December 31, 2013
    Assignee: Lam Research Corporation
    Inventors: Luc Albarede, Vijayakumar C Venugopal
  • Patent number: 8473089
    Abstract: A method for assessing health status of a processing chamber is provided. The method includes executing a recipe. The method also includes receiving processing data from a set of sensors during execution of the recipe. The method further includes analyzing the processing data utilizing a set of multi-variate predictive models. The method yet also includes generating a set of component wear data values. The method yet further includes comparing the set of component wear data values against a set of useful life threshold ranges. The method moreover includes generating a warning if the set of component wear data values is outside of the set of useful life threshold ranges.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 25, 2013
    Assignee: Lam Research Corporation
    Inventors: Luc Albarede, Eric Pape, Vijayakumar C Venugopal, Brian D Choi
  • Patent number: 8164353
    Abstract: A method for characterizing deposited film on a substrate within a processing chamber during processing is provided. The method includes determining voltage-current characteristic for a probe head when measuring capacitor is set at a first capacitance value. The method also includes applying RF train to the probe head when measuring capacitor is set at a capacitance value greater than first capacitance value. The method further includes providing an initial resistance value and an initial capacitance value for the deposited film. The method yet also includes employing initial resistance value, initial capacitance value, and voltage-current characteristic to generate simulated voltage-time curve. The method yet further includes determining measured voltage-time curve, which represents potential drop across the deposited film for one RF train. The method more over includes comparing the two curves.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: April 24, 2012
    Assignee: Lam Research Corporation
    Inventors: Jean-Paul Booth, Luc Albarede, Jung Kim, Douglas Keil
  • Publication number: 20110128017
    Abstract: An arrangement within a plasma reactor for detecting a plasma unconfinement event is provided. The arrangement includes a sensor, which is a capacitive-based sensor implemented within the plasma reactor. The sensor is implemented outside of a plasma confinement region and is configured to produce a transient current when the sensor is exposed to plasma associated with the plasma unconfinement event. The sensor has at least one electrically insulative layer oriented toward the plasma associated with the plasma unconfined event. The arrangement also includes a detection circuit, which is electrically connected to the sensor for converting the transient current into a transient voltage signal and for processing the transient voltage signal to ascertain whether the plasma unconfinement event exists.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 2, 2011
    Inventors: Jean-Paul Booth, Alexei Marakhtanov, Rajinder Dhindsa, Luc Albarede, Seyed Jafar Jafarian-Tehrani
  • Publication number: 20100332201
    Abstract: A method for assessing health status of a processing chamber is provided. The method includes executing a recipe. The method also includes receiving processing data from a set of sensors during execution of the recipe. The method further includes analyzing the processing data utilizing a set of multi-variate predictive models. The method yet also includes generating a set of component wear data values. The method yet further includes comparing the set of component wear data values against a set of useful life threshold ranges. The method moreover includes generating a warning if the set of component wear data values is outside of the set of useful life threshold ranges.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 30, 2010
    Inventors: Luc Albarede, Eric Pape, Vijayakumar C. Venugopal, Brian D. Choi
  • Publication number: 20100332014
    Abstract: A method for detecting an in-situ fast transient event within a processing chamber during substrate processing is provided. The method includes a set of sensors comparing a data set to a set of criteria (in-situ fast transient events) to determine if the first data set includes a potential in-situ fast transient event. If the first data set includes the potential in-situ fast transient event, the method also includes saving an electrical signature that occurs in a time period during which the potential in-situ fast transient event occurs. The method further includes comparing the electrical signature against a set of stored arc signatures. If a match is determined, the method yet also includes classifying the electrical signature as a first in-situ fast transient event and determining a severity level for the first in-situ fast transient event based on a predefined set of threshold ranges.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 30, 2010
    Inventors: Luc Albarede, Vijayakumar C. Venugopal
  • Publication number: 20100007362
    Abstract: A method for characterizing deposited film on a substrate within a processing chamber during processing is provided. The method includes determining voltage-current characteristic for a probe head when measuring capacitor is set at a first capacitance value. The method also includes applying RF train to the probe head when measuring capacitor is set at a capacitance value greater than first capacitance value. The method further includes providing an initial resistance value and an initial capacitance value for the deposited film. The method yet also includes employing initial resistance value, initial capacitance value, and voltage-current characteristic to generate simulated voltage-time curve. The method yet further includes determining measured voltage-time curve, which represents potential drop across the deposited film for one RF train. The method more over includes comparing the two curves.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 14, 2010
    Inventors: Jean-Paul Booth, Luc Albarede, Jung Kim, Douglas Keil