Patents by Inventor Luc Francois

Luc Francois has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240122574
    Abstract: Systems, methods, and apparatuses for confidence mapping of shear wave measurements are disclosed. Confidence maps of shear wave image measurements may be generated from one or more confidence factors. Masking of graphical overlays of tissue stiffness values, based at least in part on the confidence map is disclosed. The confidence map and/or masked graphical overlays of tissue stiffness values may be superimposed on ultrasound images and provided on a display.
    Type: Application
    Filed: December 20, 2023
    Publication date: April 18, 2024
    Inventors: Ji Cao, Lars Jonas Olsson, Vijay Thakur Shamdasani, David Wesley Clark, Hua Xie, Jean-Luc Francois-Marie Robert, Alexey Viktorovich Cherepakhin, Bruce Adrian Kincy
  • Patent number: 11957515
    Abstract: The present disclosure describes ultrasound imaging systems and methods configured to generate ultrasound images based on undersampled ultrasound data. The ultrasound images may be generated by applying a neural network trained with samples of known fully sampled data and undersampled data derived from the known fully sampled data to a acquired sparsely sampled data. The training of the neural network may involve training adversarial generative network including a generator and a discriminator. The generator is trained with sets of known undersampled data until the generator is capable of generating estimated image data, which the classifier is incapable of differentiation as either real or fake, and the trained generator may then be applied to unknown undersampled data.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: April 16, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christine Menking Swisher, Jean-Luc Francois-Marie Robert, Man Nguyen
  • Patent number: 11960035
    Abstract: Systems and methods for encoding radiofrequency, RF, data, e.g., electrical signals, by a microbeamformer are disclosed herein. The microbeamformer may use a pseudo-random sampling pattern (700) to sum samples of the RF data stored in a plurality of memory cells. The memory cells may be included in a delay line of the microbeamformer in some examples. The summed samples may form an encoded signal transmitted to a decoder which reconstructs the original RF data from the encoded signal. The decoder may use knowledge of the pseudo-random sampling pattern to reconstruct the original data in some examples.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 16, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gregory Tsiang Ely, Faik Can Meral, Jean-Luc Francois-Marie Robert
  • Publication number: 20240065669
    Abstract: The present invention relates to an ultrasound system (10) comprising a first non-invasive ultrasound probe (14) configured to acquire first ultrasound data having a first field of view; a second invasive ultrasound probe (16) configured to acquire second ultrasound data having a second field of view which is different from the first field of view; a tracking unit (30) configured to determine tracking data comprising a position and orientation of the first non-invasive ultrasound probe (14) relative to the second invasive ultrasound probe (16); and a registration unit (32) configured to register the second field of view into the first field of view based on the tracking data.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: GERARDUS HENRICUS MARIA GIJSBERS, ALEXANDER KOLEN, HARM JAN WILLEM BELT, NENAD MIHAJLOVIC, JEAN-LUC FRANCOIS-MARIE ROBERT
  • Patent number: 11883237
    Abstract: Systems, methods, and apparatuses for confidence mapping of shear wave measurements are disclosed. Confidence maps of shear wave image measurements may be generated from one or more confidence factors. Masking of graphical overlays of tissue stiffness values, based at least in part on the confidence map is disclosed. The confidence map and/or masked graphical overlays of tissue stiffness values may be superimposed on ultrasound images and provided on a display.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: January 30, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ji Cao, Lars Jonas Olsson, Vijay Thakur Shamdasani, David Wesley Clark, Hua Xie, Jean-Luc Francois-Marie Robert, Alexey Viktorovich Cherepakhin, Bruce Adrian Kincy
  • Publication number: 20230408662
    Abstract: An ultrasound imaging system includes an array of acoustic elements configured to transmit ultrasound energy at a first transmit speed and receive echoes associated with the ultrasound energy transmitted at the first transmit speed. The system further includes a processor circuit in communication with the array of acoustic elements. The processor is configured to generate a plurality of multilines based on the received echoes, determine a second transmit speed, determine a set of transmit focus delays based on the second transmit speed, adjust the plurality of multilines using the set of transmit focus delays, generate an image based on the adjusted plurality of multilines, and output the generated image to a display in communication with the processor circuit.
    Type: Application
    Filed: November 23, 2021
    Publication date: December 21, 2023
    Inventors: Jean-Luc Francois-Marie Robert, Changhong Hu
  • Patent number: 11839509
    Abstract: The present invention relates to an ultrasound system. A first non-invasive ultrasound probe receives first ultrasound data having a first field of view and a second invasive ultrasound probe receives second ultrasound data having a second field of view which is different from the first field of view. A tracking unit determines tracking data including a position and orientation of the first non-invasive ultrasound probe relative to the second invasive ultrasound probe. A registration unit registers the second field of view into the first field of view based on the tracking data.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: December 12, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Gerardus Henricus Maria Gijsbers, Alexander Franciscus Kolen, Harm Jan Willem Belt, Nenad Mihajlovic, Jean-Luc Francois-Marie Robert
  • Publication number: 20230377246
    Abstract: In some examples, tissue types in B-mode images may be differentiated by multiparameter imaging and/or other segmentation techniques. The tissue types may be used to assign material properties to voxels of the B-mode image, such as color, translucency, and reflectivity. The material properties may be used to generate a rendered image. In some examples, one or more of the material properties assigned to the voxels may correspond to values of tissue parameters acquired during multiparameter imaging. The rendered image may include data based on both the B-mode image and the multiparameter imaging.
    Type: Application
    Filed: September 26, 2021
    Publication date: November 23, 2023
    Inventors: Jean-Luc Francois-Marie Robert, Francois Guy Gerard Marie Vignon, Benoit Jean-Dominique Bertrand Maurice Mory
  • Patent number: 11775716
    Abstract: A method of capturing signals during hardware verification of a circuit design utilizes at least one field-programmable gate array (FPGA) and includes selecting, at run time and using one or more pre-compiled macros, a group of signals to be captured during verification of the circuit design and storing values of the group of signals in at least first and second random access memories disposed in the at least one FPGA. The first and second random access memories may be addressable spaces of the same random access memory.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: October 3, 2023
    Assignee: Synopsys, Inc.
    Inventors: Arturo Salz, Ching-Ping Chou, Jean-Philippe Colrat, Sébastien Roger Delerse, Luc Francois Vidal, Arnold Mbotchak
  • Patent number: 11726195
    Abstract: Systems and methods for improving spectral-shift methods for calculating acoustic attenuation coefficients are disclosed. Systems, methods, and apparatuses for transmitting ultrasound pulse sequences for improved signal-to-noise outside the main passband of ultrasound transducers are disclosed. Systems, methods, and apparatuses for using the echoes from the transmitted pulse sequences to calculate the attenuation coefficient are disclosed.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 15, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sheng-Wen Huang, Hua Xie, Jean-Luc Francois-Marie Robert, Man Nguyen, Vijay Thakur Shamdasani
  • Publication number: 20230248337
    Abstract: In some examples, received signals from certain multilines may be selectively filtered to remove aliased frequencies that may result in grating lobes in ultrasound images. In some examples, a transmit beam may be shaped to reduce spatial frequencies in received signals. In some examples, the width of the transmit beam may be adjusted based on a frequency of the transmit signal. In some examples, a focal depth of the transmit beam may be adjusted based on a frequency of the transmit signal.
    Type: Application
    Filed: June 16, 2021
    Publication date: August 10, 2023
    Inventors: Faik Can Meral, Jean-Luc Francois-Marie Robert, Francois Guy Gerard Marie Vignon, Jun Seob Shin, Iason Zacharias Apostolakis, Seyedali Sadeghi
  • Publication number: 20230228873
    Abstract: An ultrasound imaging system may acquire short and/or undersampled radiofrequency ensembles for generating color Doppler images. The ultrasound imaging system may process the short and/or undersampled ensembles to simulate color Doppler images acquired from long radiofrequency ensembles. In some examples, the ultrasound imaging system may include a neural networks to process the ensembles. In some examples, the neural network may include two serial neural networks. In some examples, during training of the neural network, a power Doppler-based flow mask may be used on the output of the neural network. In some examples, during training of the neural network, an adversarial loss may be used on the output of the neural network.
    Type: Application
    Filed: June 15, 2021
    Publication date: July 20, 2023
    Inventors: Iason Zacharias Apostolakis, Faik Can Meral, Jun Seob Shin, Francois Guy Gerard Marie Vignon, Shiying Wang, Jean-Luc Francois-Marie Robert
  • Patent number: 11650300
    Abstract: An ultrasound system according to the present disclosure may include a beamformer configured to perform per-channel weighting on the RF signals received at each channel in order to reduce noise clutter in the image. For this purpose, the beamformer may receive at one or more channels associated with an active aperture, sets of receive signals associated with respective transmit beams that at least partially overlap. The beamformer may alter the receive space, e.g., to align the sets of receive signals to a common location (e.g., between the transmit beams) and generate a coherence-based weighting value that may be indicative of blockage. The coherence-based weighting value may be applied on a per-channel basis to the receive signals. The beamformer may also communicate the coherence metric to the controller for altering the transmit space.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 16, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sibo Li, Jean-Luc Francois-Marie Robert, Francois Guy Gerard Marie Vignon, Jun Seob Shin, Seungsoo Kim
  • Patent number: 11647991
    Abstract: In an ultrasound imaging system which produces synthetically transmit focused images, the multiline signals used to form image scanlines are analyzed for speed of sound variation, and a map 60 of this variation is generated. In a preferred implementation, the phase discrepancy of the received multilines caused by speed of sound variation in the medium is estimated in the angular spectrum domain for the receive angular spectrum. Once the phase is estimated for all locations in an image, the differential phase between two points at the same lateral location, but different depth, is computed. This differential phase is proportional to the local speed of sound between the two points. A color-coded two- or three-dimensional map 60 is produced from these speed of sound estimates and presented to the user.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 16, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jean-Luc Francois-Marie Robert, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Jun Seob Shin, Seungsoo Kim, Hua Xie, Man Nguyen, Faik Can Meral, William Tao Shi, Carolina Amador Carrascal
  • Patent number: 11647989
    Abstract: Improved ultrasound imaging devices and methods of using the devices are provided. An intraluminal imaging device is configured process imaging data obtained using a single imaging sequence in different processing paths to generate B-mode and flow images. For example, an ultrasound imaging system includes an ultrasound imaging device comprising an array of acoustic elements and a processor in communication with the array. The processor activates the array of acoustic elements to acquire ultrasound data using a sequence of transmit-receive pairs, generates a B-mode image using the acquired ultrasound data, forms a plurality of sub-apertures comprising a portion of the transmit-receive pairs, groups the sub-apertures into temporally-spaced ensembles, determines a flow estimate based on a comparison of at least one of sub-apertures within an ensemble, ensembles within an aperture, or different apertures, and outputs a graphical representation of the B-mode image and the flow estimate to a display.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: May 16, 2023
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: David Hope Simpson, Andrew Hancock, Jun Seob Shin, Seungsoo Kim, Jean-luc Francois-Marie Robert, Francois Guy Gerard Marie Vignon
  • Patent number: 11633172
    Abstract: An ultrasound imaging system which uses multiline receive beamforming for synthetic transmit focusing are phase adjusted to account for speed of sound variation in the transmission medium. The phase discrepancy of the received multilines caused by speed of sound variation in the medium is estimated in the frequency domain for both the transmit angular spectrum and the receive angular spectrum. The phase variation is removed in the frequency domain, then an inverse Fourier transform is used to transform the frequency domain results to the spatial domain. In another implementation, the phase discrepancy of the received multilines is estimated and corrected entirely in the spatial domain.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: April 25, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jean-Luc Francois-Marie Robert, Sheng-Wen Huang, Francois Guy Gerard Marie Vignon, Jun Seob Shin, Seungsoo Kim, Faik Can Meral
  • Patent number: 11596386
    Abstract: An ultrasound imaging system according to the present disclosure may include an ultrasound transducer assembly comprising a plurality of apertures that are configured to transmit signals toward and receive signals from a region of interest (ROI) of a subject, a tracking sensor disposed within the subject and configured to move within the ROI, the sensor being responsive to signals transmitted by the apertures, and at least one processor in communication with the ultrasound transducer assembly and the tracking sensor.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: March 7, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shyam Bharat, Man Nguyen, Ameet Kumar Jain, Jean-Luc Francois-Marie Robert, Vijay Parthasarathy, Atul Gupta, Kunal Vaidya, Ramon Quido Erkamp
  • Patent number: 11529125
    Abstract: The invention provides methods and systems for generating an ultrasound image. In a method, the generation of an ultrasound image comprises: obtaining channel data, the channel data defining a set of imaged points; for each imaged point: isolating the channel data; performing a spatial spectral estimation on the isolated channel data; and selectively attenuating the spatial spectral estimation channel data, thereby generating filtered channel data; and summing the filtered channel data, thereby forming a filtered ultrasound image. In some examples, the method comprises aperture extrapolation. The aperture extrapolation improves the lateral resolution of the ultrasound image. In other examples, the method comprises transmit extrapolation. The transmit extrapolation improves the contrast of the image. In addition, the transmit extrapolation improves the frame rate and reduces the motion artifacts in the ultrasound image. In further examples, the aperture and transmit extrapolations may be combined.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: December 20, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Francois Guy Gerard Marie Vignon, Jun Seob Shin, Sheng-Wen Huang, Jean-Luc Francois-Marie Robert
  • Patent number: 11523802
    Abstract: Ultrasound imaging system, devices, and methods for minimizing grating lobe artefacts in an ultrasound image are provided. For example, an ultrasound imaging system can include an array of acoustic elements and a processor in communication with the array. The processor controls the array to activate a plurality of apertures and subapertures in a scan sequence, generate an image comprising a plurality of pixels, identify at least one subaperture of the plurality of subapertures corresponding to a reduced signal value for one or more pixels of the image, and generate a grating-lobe-minimized image based on the identified subapertures. The grating-lobe-minimized image can be output to a display or combined with the original ultrasound image to include image features lost or reduced in the grating-lobe-minimized image. The grating-lobe-minimized image advantageously reduces image artefacts and clutter to simplify ultrasound image analysis and diagnosis procedures.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: December 13, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Francois Guy Gerard Marie Vignon, David Hope Simpson, Andrew Hancock, Seungsoo Kim, Jun Seob Shin, Jean-luc Francois-Marie Robert
  • Patent number: 11464489
    Abstract: An ultrasonic diagnostic imaging system produces an image of shear wave velocities by transmitting push pulses to generate shear waves. A plurality of tracking lines are transmitted and echoes received by a focusing beamformer adjacent to the location of the push pulses. The tracking lines are sampled in a time-interleaved manner. The echo data acquired along each tracking line is processed to determine the time of peak tissue displacement caused by the shear waves at points along the tracking line, and the times of peaks at adjacent tracking lines compared to compute a local shear wave velocity. The resultant map of shear wave velocity values is color-coded and displayed over an anatomical image of the region of interest.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: October 11, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Roy Beck Peterson, Yan Shi, Hua Xie, Jean-Luc Francois-Marie Robert, Vijay Thakur Shamdasani, Robert Randall Entrekin, Anna Teresa Fernandez