Patents by Inventor Ludovic Godet

Ludovic Godet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142690
    Abstract: An apparatus for waveguides and a method of fabricating a waveguide combiner having at least one grating with trenches gap-filled with variable refractive index materials. At least two trenches of at least one grating includes a first gap-fill material having a first volume and a first refractive index, and a second gap-fill material having a second volume and a second refractive index different than the first refractive index. Control of the deposition of first volume and the deposition of second volume in an inkjet deposition process provide for the formation of the grating with two trenches that have different refractive indices and different gap-fill depths. The first gap-fill material and the second gap-fill material merge to form the gap-filler. Therefore, by controlling the varied refractive indices and different gap-fill depths the waveguide combiner is optimized by efficiency or a color uniformity.
    Type: Application
    Filed: September 22, 2023
    Publication date: May 2, 2024
    Inventors: Yingdong LUO, Jinxin FU, Zhengping YAO, Daihua ZHANG, Ludovic GODET
  • Publication number: 20240142227
    Abstract: Embodiments described herein provide for devices and methods of measuring a pitch P of optical device structures and an orientation angle ? of the optical device structures. One embodiment of the system includes an optical arm coupled to an arm actuator. The optical arm includes a light source. The light source emits a light path operable to be diffracted to the stage. The optical arm further includes a first beam splitter and a second beam splitter positioned in the light path. The first beam splitter directs the light path through a first lens and the second beam splitter directs the light path through a first dove prism and a second lens. The optical arm further includes a first detector operable to detect the light path from the first lens and second detector operable to detect the light path from the second lens.
    Type: Application
    Filed: January 9, 2024
    Publication date: May 2, 2024
    Inventors: Yangyang SUN, Jinxin FU, Ludovic GODET
  • Publication number: 20240142693
    Abstract: Methods for modifying the interface of optical substrates. To achieve desirable optical properties, surface defects need to be removed from the interface layer. In one example, a substrate is exposed to an ion beam then a high temperature bake or laser annealing to correct the interface layer. In another example, a high energy ion beam can be used to remove the interface layer then a new interface layer can be added during a high temperature bake or laser annealing with a protective layer added last. If not removed surface defects in the interface layer may absorb a percentage of light in a single interaction. In a waveguide, light may bounce ten to hundreds of times inside a substrate causing significant light loss. Therefore, removing the surface defects significantly increases waveguide efficiency.
    Type: Application
    Filed: October 26, 2023
    Publication date: May 2, 2024
    Inventors: Ludovic GODET, Jinxin FU
  • Publication number: 20240124969
    Abstract: Embodiments described herein provide for optical devices with methods of forming optical device substrates having at least one area of increased refractive index or scratch resistance. One method includes disposing an etch material on a discrete area of an optical device substrate or an optical device layer, disposing a diffusion material in the discrete area, and removing excess diffusion material to form an optical material in the optical device substrate or the optical device layer having a refractive index greater than or equal to 2.0 or a hardness greater than or equal to 5.5 Mohs.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 18, 2024
    Inventors: Nai-Wen PI, Jinxin FU, Kang LUO, Ludovic GODET
  • Publication number: 20240125670
    Abstract: A method of optical device metrology is provided. The method includes introducing a first type of light into a first optical device during a first time period, the first optical device including an optical substrate and an optical film disposed on the optical substrate, the first optical device further including a first surface, a second surface, and one or more sides connecting the first surface with the second surface; and measuring, during the first time period, a quantity of the first type of light transmitted from a plurality of locations on the first surface or the second surface during the first time period, wherein the measuring is performed by a detector coupled to one or more fiber heads positioned to collect the light transmitted from the plurality of locations.
    Type: Application
    Filed: December 27, 2023
    Publication date: April 18, 2024
    Inventors: Jinxin FU, Kang LUO, Fariah HAYEE, Ludovic GODET
  • Publication number: 20240126012
    Abstract: Embodiments of the present disclosure generally relate to methods for forming a waveguide. Methods may include measuring a waveguide substrate, the waveguide having a substrate thickness distribution; and depositing an index-matched layer onto a surface of the waveguide, the index-matched layer having a first surface disposed on the waveguide substrate and a second surface opposing the first surface, wherein the index-matched layer is disposed only over a portion of the waveguide substrate, and a device slope of a second surface of the index-matched layer is substantially the same as the waveguide slope of the first surface of the waveguide.
    Type: Application
    Filed: October 18, 2023
    Publication date: April 18, 2024
    Inventors: Yingdong LUO, Zhengping YAO, Daihua ZHANG, David Alexander SELL, Jingyi YANG, Xiaopei DENG, Kevin MESSER, Samarth BHARGAVA, Rami HOURANI, Ludovic GODET
  • Publication number: 20240101937
    Abstract: Embodiments of the present disclosure herein include a method of removing a contamination material from an optical device. The method may include disposing an optical device in a process chamber, the optical device having optical device structures formed in a substrate, the contamination material is disposed at least on sidewalls of the optical device structures and within trenches between the optical device structures, and exposing the optical device to a plasma generated in the process chamber, the plasma generated from oxygen gas (O2), chlorine gas (Cl2), Argon (Ar), or a combination thereof, the exposing the optical device to the plasma removes the contamination material.
    Type: Application
    Filed: September 22, 2023
    Publication date: March 28, 2024
    Inventors: Wei WU, Jhenghan YANG, Yongmei CHEN, Jinxin FU, Ludovic GODET
  • Publication number: 20240094630
    Abstract: Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, an imprint composition is provided and contains a plurality of passivated nanoparticles, one or more solvents, a surface ligand, an additive, and an acrylate. Each passivated nanoparticle contains a core and one or more shells, where the core contains one or more metal oxides and the shell contains one or more passivation materials. The passivation material of the shell contains one or more silicon-containing compounds.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Amita JOSHI, Andrew CEBALLOS, Kenichi OHNO, Rami HOURANI, Ludovic GODET
  • Publication number: 20240084435
    Abstract: Embodiments described herein relate to encapsulated nanostructured optical devices and methods of encapsulating gratings of such devices by asymmetric selective physical vapor deposition (PVD). In some embodiments, a method for encapsulating optical device gratings includes a first PVD process and a second PVD process that may be carried out simultaneously or sequentially. The first PVD process may provide a first stream of material at a first angle non-perpendicular to a substrate of the grating. The second PVD process may provide a second stream of material at a second angle non-perpendicular to the substrate of the grating. The combination of the first PVD process and the second PVD process forms an encapsulation layer over the grating and one or more air gaps between adjacent fins of the grating.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: Ludovic GODET, Bencherki MEBARKI, Jinxin FU
  • Publication number: 20240075492
    Abstract: An optical device coating assembly is provided. The optical device coating assembly includes a substrate support operable to retain an optical device substrate. The coating assembly further includes a first actuator connected to the substrate support. The first actuator is configured to rotate the substrate support. The coating assembly includes a holder configured to hold a coating applicator against an edge of the optical device substrate when the optical device substrate is rotated on the substrate support and a second actuator operable to apply a force on the holder in a direction towards the substrate support. The second actuator is a constant force actuator.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Inventors: Kangkang WANG, Yaseer Arafath AHAMED, Yige GAO, Benjamin B. RIORDON, Rami HOURANI, James D. STRASSNER, Ludovic GODET, Thinh NGUYEN
  • Patent number: 11913776
    Abstract: Embodiments described herein provide for devices and methods of measuring a pitch P of optical device structures and an orientation angle ? of the optical device structures. One embodiment of the system includes an optical arm coupled to an arm actuator. The optical arm includes a light source. The light source emits a light path operable to be diffracted to the stage. The optical arm further includes a first beam splitter and a second beam splitter positioned in the light path. The first beam splitter directs the light path through a first lens and the second beam splitter directs the light path through a first dove prism and a second lens. The optical arm further includes a first detector operable to detect the light path from the first lens and second detector operable to detect the light path from the second lens.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yangyang Sun, Jinxin Fu, Ludovic Godet
  • Patent number: 11899366
    Abstract: Embodiments described herein relate to methods and apparatus for performing immersion field guided post exposure bake processes. Embodiments of apparatus described herein include a chamber body defining a processing volume. A pedestal may be disposed within the processing volume and a first electrode may be coupled to the pedestal. A moveable stem may extend through the chamber body opposite the pedestal and a second electrode may be coupled to the moveable stem. In certain embodiments, a fluid containment ring may be coupled to the pedestal and a dielectric containment ring may be coupled to the second electrode.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: February 13, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Viachslav Babayan, Douglas A. Buchberger, Jr., Qiwei Liang, Ludovic Godet, Srinivas D. Nemani, Daniel J. Woodruff, Randy Harris, Robert B. Moore
  • Patent number: 11892367
    Abstract: A method of optical device metrology is provided. The method includes introducing a first type of light into a first optical device during a first time period, the first optical device including an optical substrate and an optical film disposed on the optical substrate, the first optical device further including a first surface, a second surface, and one or more sides connecting the first surface with the second surface; and measuring, during the first time period, a quantity of the first type of light transmitted from a plurality of locations on the first surface or the second surface during the first time period, wherein the measuring is performed by a detector coupled to one or more fiber heads positioned to collect the light transmitted from the plurality of locations.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: February 6, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jinxin Fu, Kang Luo, Fariah Hayee, Ludovic Godet
  • Patent number: 11892676
    Abstract: Embodiments described herein provide for methods of forming angled optical device structures. The methods described herein utilize etching a mandrel material with an etch chemistry that is selective to the hardmask, i.e., the mandrel material is etched at a higher rate than the hardmask. Therefore, mandrel trenches are formed in the mandrel material. Device material of the angled optical device structures to be formed is deposited on the plurality of angled mandrels. An angled etch process is performed on portions of the device material such that the angled optical device structures are formed.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: February 6, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rutger Meyer Timmerman Thijssen, Ludovic Godet
  • Patent number: 11884076
    Abstract: Embodiments described herein provide for a fluid management system and a method of utilizing the fluid management system. The fluid management system includes a servicing fluid management system and an ink management system. The servicing fluid management system and the ink management system run in parallel within an inkjet chamber. The ink management system supports the flow of inkjet materials between a waste tank, one or more inkjet material supply tanks, an ink management module, and the inkjet printer. The servicing fluid management system supports the flow of servicing fluids between the waste tank, one or more servicing fluid supply tanks, a servicing fluid management module, and the inkjet printer.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: January 30, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Kazuya Daito, Kang Luo, Elsa Massonneau, Alexey Stepanov, Ludovic Godet
  • Patent number: 11878532
    Abstract: Embodiments described herein relate to an inkjet printing platform. The inkjet printing platform is utilized for fabrication of optical films and optical device structures. The inkjet printing platform includes a transfer chamber, one or more inkjet chambers, a plurality of auxiliary modules, a substrate flipper, and load ports. The inkjet printing platform is operable to perform an inkjet printing process on a substrate to form an optical film and/or an optical device.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: January 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Ludovic Godet, Michael David-Scott Kemp, Kang Luo, Kazuya Daito, Kenneth S. Ledford, Bahubali S. Upadhye, Hemantha Raju, John Rusconi, Elsa Massonneau, Mahendran Chidambaram, Alexey Stepanov, Visweswaren Sivaramakrishnan
  • Patent number: 11873554
    Abstract: Embodiments described herein provide for optical devices with methods of forming optical device substrates having at least one area of increased refractive index or scratch resistance. One method includes disposing an etch material on a discrete area of an optical device substrate or an optical device layer, disposing a diffusion material in the discrete area, and removing excess diffusion material to form an optical material in the optical device substrate or the optical device layer having a refractive index greater than or equal to 2.0 or a hardness greater than or equal to 5.5 Mohs.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: January 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nai-Wen Pi, Jinxin Fu, Kang Luo, Ludovic Godet
  • Patent number: 11868043
    Abstract: Embodiments of the present disclosure generally relate to imprint compositions and materials and related processes useful for nanoimprint lithography (NIL). In one or more embodiments, an imprint composition is provided and contains a plurality of passivated nanoparticles, one or more solvents, a surface ligand, an additive, and an acrylate. Each passivated nanoparticle contains a core and one or more shells, where the core contains one or more metal oxides and the shell contains one or more passivation materials. The passivation material of the shell contains one or more atomic layer deposition (ALD) materials, one or more block copolymers, or one or more silicon-containing compounds.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: January 9, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amita Joshi, Andrew Ceballos, Kenichi Ohno, Rami Hourani, Ludovic Godet
  • Patent number: 11867931
    Abstract: Embodiments of the present disclosure generally relate to optical devices. More specifically, embodiments described herein relate to optical devices and methods of manufacturing optical devices having optical device structures with at least one of varying depths or refractive indices across the surface of a substrate. According to certain embodiments, an inkjet process is used to deposit a volumetrically variable optical device that is etched to form a diffractive optic element (DOE). Volumetrically variable can relate to the thickness of the optical device, or the relative volume of two or more diffractive materials deposited in combination. According to other embodiments, a single-profile DOE is deposited on a substrate and an inkjet process deposits a volumetrically variable organic material over the DOE. The DOE and organic material are etched to modify the profile of the structure, after which the organic material is removed, leaving the modified-profile DOE.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: January 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kang Luo, Xiaopei Deng, Daihua Zhang, Ludovic Godet
  • Publication number: 20240001398
    Abstract: A method of forming a substrate carrier is provided. The method includes forming a first electrode over a first surface of a substrate, the first electrode arranged in a first pattern including a plurality of segments, wherein portions of the plurality of segments are spaced apart from each other by a plurality of gaps; and dispensing a plurality of droplets of a dielectric material over the substrate and into the plurality of gaps. The plurality of droplets includes a first droplet and a second droplet, the first droplet is dispensed onto a first location over the substrate, the second droplet is dispensed onto a second location over the substrate, a size of the first droplet is at least 10% larger than a size of the second droplet.
    Type: Application
    Filed: June 19, 2023
    Publication date: January 4, 2024
    Inventors: Russell Chin Yee TEO, Yingdong LUO, Ludovic GODET, Daihua ZHANG, Zhengping YAO, James D. STRASSNER