Patents by Inventor Ludovic Godet

Ludovic Godet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10954594
    Abstract: The present disclosure generally relate to a semiconductor processing apparatus. In one embodiment, a processing chamber is disclosed herein. The processing chamber includes a chamber body and lid defining an interior volume, the lid configured to support a housing having a cap, a substrate support disposed in the interior volume, a vaporizer coupled to the cap and having an outlet open to the interior volume of the processing chamber, wherein the vaporizer is configured to deliver a precursor gas to a processing region defined between the vaporizer and the substrate support, and a heater disposed adjacent to the vaporizer, wherein the heater is configured to heat the vaporizer.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: March 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Viachslav Babayan, Qiwei Liang, Tobin Kaufman-Osborn, Ludovic Godet, Srinivas D. Nemani
  • Patent number: 10955606
    Abstract: Embodiments described herein relate to methods of fabricating waveguide structures with gratings having front angles less than about 45° and back angles less than about 45°. The methods include imprinting stamps into nanoimprint resists disposed on substrates. The nanoimprint resists are subjected to a cure process. The stamps are released from the nanoimprint resist at a release angle ? using a release method. The nanoimprint resists are subjected to an anneal process to form a waveguide structure comprising a plurality of gratings with a front angle ? and a back angle ? relative to a second plane of the surface of the substrate less than about 45°.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Yu-tak Young, Ludovic Godet, Robert Jan Visser, Wayne McMillan
  • Patent number: 10943779
    Abstract: Embodiments include methods and systems of 3D structure fill. In one embodiment, a method of filling a trench in a wafer includes performing directional plasma treatment with an ion beam at an angle with respect to a sidewall of the trench to form a treated portion of the sidewall and an untreated bottom of the trench. A material is deposited in the trench. The deposition rate of the material on the treated portion of the sidewall is different than a second deposition rate on the untreated bottom of the trench. In one embodiment, a method includes depositing a material on the wafer, filling a bottom of the trench and forming a layer on a sidewall of the trench and a top surface adjacent to the trench. The method includes etching the layer with an ion beam at an angle with respect to the sidewall.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: March 9, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ellie Yieh, Ludovic Godet, Srinivas Nemani, Er-Xuan Ping, Gary Dickerson
  • Publication number: 20210066036
    Abstract: Aspects of the disclosure relate to apparatus for the fabrication of waveguides. In one example, an angled ion source is utilized to project ions toward a substrate to form a waveguide which includes angled gratings. In another example, an angled electron beam source is utilized to project electrons toward a substrate to form a waveguide which includes angled gratings. Further aspects of the disclosure provide for methods of forming angled gratings on waveguides utilizing an angled ion beam source and an angled electron beam source.
    Type: Application
    Filed: October 26, 2020
    Publication date: March 4, 2021
    Inventors: Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN, Kartik RAMASWAMY, Yang YANG, Manivannan THOTHADRI, Chien-An CHEN
  • Patent number: 10935799
    Abstract: A method of forming an optical grating component. The method may include providing a substrate, the substrate comprising an underlayer and a hard mask layer, disposed on the underlayer. The method may include patterning the hard mask layer to define a grating field and etching the underlayer within the grating field to define a variable height of the underlayer along a first direction, the first direction being parallel to a plane of the substrate. The method may include forming an optical grating within the grating field using an angled ion etch, the optical grating comprising a plurality of angled structures, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate, wherein the plurality of angled structures define a variable depth along the first direction, based upon the variable height of the underlayer.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Rutger Meyer Timmerman Thijssen, Ludovic Godet, Morgan Evans, Joseph C. Olson
  • Patent number: 10927449
    Abstract: Embodiments of the present disclosure provide a sputtering chamber with in-situ ion implantation capability. In one embodiment, the sputtering chamber comprises a target, an RF and a DC power supplies coupled to the target, a support body comprising a flat substrate receiving surface, a bias power source coupled to the support body, a pulse controller coupled to the bias power source, wherein the pulse controller applies a pulse control signal to the bias power source such that the bias power is delivered either in a regular pulsed mode having a pulse duration of about 100-200 microseconds and a pulse repetition frequency of about 1-200 Hz, or a high frequency pulsed mode having a pulse duration of about 100-300 microseconds and a pulse repetition frequency of about 200 Hz to about 20 KHz, and an exhaust assembly having a concentric pumping port formed through a bottom of the processing chamber.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: February 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jingjing Liu, Ludovic Godet, Srinivas D. Nemani, Yongmei Chen, Anantha K. Subramani
  • Patent number: 10930472
    Abstract: Methods and apparatus for forming a metal silicide as nanowires for back-end interconnection structures for semiconductor applications are provided. In one embodiment, the method includes forming a metal silicide layer on a substrate by a chemical vapor deposition process or a physical vapor deposition process, thermal treating the metal silicide layer in a processing chamber, applying a microwave power in the processing chamber while thermal treating the metal silicide layer; and maintaining a substrate temperature less than 400 degrees Celsius while thermal treating the metal silicide layer. In another embodiment, a method includes supplying a deposition gas mixture including at least a metal containing precursor and a reacting gas on a surface of a substrate, forming a plasma in the presence of the deposition gas mixture by exposure to microwave power, exposing the plasma to light radiation, and forming a metal silicide layer on the substrate from the deposition gas.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: February 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Annamalai Lakshmanan, Kaushal K. Singh, Andrew Cockburn, Ludovic Godet, Paul F. Ma, Mehul B. Naik
  • Patent number: 10921721
    Abstract: Embodiments of the present disclosure include measurement systems and grating pattern arrays. The measurement systems include multiple subsystems for creating diffraction patterns or magnified real images of grating regions on a substrate. The measurements systems are configured to reflect and transmit light, and the reflected and transmitted beams create diffraction patterns and enlarged images. The diffraction patterns and images provide information on grating pitch and angles of grating regions. Grating pattern arrays disposed on a substrate include main regions and reference regions. The reference regions are used to locate corresponding main regions. The measurement systems do not include a rotating stage, and thus precise control of rotation of a stage is not needed.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: February 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jinxin Fu, Yifei Wang, Yongan Xu, Ludovic Godet
  • Publication number: 20210026257
    Abstract: Implementations described herein relate to apparatus for post exposure processing. More specifically, implementations described herein relate to field-guided post exposure process chambers and cool down/development chambers used on process platforms. In one implementation, a plurality of post exposure process chamber and cool/down development chamber pairs are positioned on a process platform in a stacked arrangement and utilize a shared plumbing module. In another implementation, a plurality of post exposure process chamber and cool down/development chambers are positioned on a process platform in a linear arrangement and each of the chambers utilize an individually dedicated plumbing module.
    Type: Application
    Filed: October 2, 2020
    Publication date: January 28, 2021
    Inventors: Viachslav BABAYAN, Ludovic GODET, Kyle M. HANSON, Robert B. MOORE
  • Publication number: 20210028055
    Abstract: Methods for seam-less gapfill comprising sequentially depositing a film with a seam, reducing the height of the film to remove the seam and repeating until a seam-less film is formed. Some embodiments include optional film doping and film treatment (e.g., ion implantation and annealing).
    Type: Application
    Filed: October 13, 2020
    Publication date: January 28, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Pramit Manna, Ludovic Godet, Rui Cheng, Erica Chen, Ziqing Duan, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20200402792
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Publication number: 20200400990
    Abstract: Embodiments described herein relate to flat optical devices and methods of forming flat optical devices. One embodiment includes a substrate having a first arrangement of a first plurality of pillars formed thereon. The first arrangement of the first plurality of pillars includes pillars having a height h and a lateral distance d, and a gap g corresponding to a distance between adjacent pillars of the first plurality of pillars. An aspect ratio of the gap g to the height h is between about 1:1 and about 1:20. A first encapsulation layer is disposed over the first arrangement of the first plurality of pillars. The first encapsulation layer has a refractive index of about 1.0 to about 1.5. The first encapsulation layer, the substrate, and each of the pillars of the first arrangement define a first space therebetween. The first space has a refractive index of about 1.0 to about 1.5.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 24, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Ludovic GODET, Tapashree ROY, Prerna Sonthalia GORADIA, Srobona SEN, Robert Jan VISSER, Nitin DEEPAK, Tapash CHAKRABORTY
  • Publication number: 20200393599
    Abstract: An imaging system and a method of manufacturing a metalens array is provided. The imaging system includes a metalens array, and light scattered from an object is split by the metalens array, such that an image is formed in front of an observer. The metalens array is at least partially transparent to visible light, so that the observer can also see the environment. The method of manufacturing the metalens array includes bonding together a plurality of substrates, and dicing the plurality of substrates into metalens arrays. The metalens arrays can be used in the imaging system.
    Type: Application
    Filed: August 9, 2019
    Publication date: December 17, 2020
    Inventors: Jinxin FU, Tapashree ROY, Ludovic GODET, Wayne MCMILLAN, Robert J. VISSER
  • Publication number: 20200386926
    Abstract: Embodiments of the present disclosure relate to methods for fabricating optical devices. One embodiment of the method includes disposing a structure material layer on a surface of a substrate and disposing a patterned photoresist over the structure material layer. The patterned photoresist has at least one device portion and at least one auxiliary portion. Each device portion and each auxiliary portion exposes unmasked portions of the structure material layer. The unmasked portions of structure material layer corresponding to each device portion and each auxiliary portion are etched. The etching the unmasked portions forms at least one optical device having device structures corresponding to the unmasked portions of at least one device portion and at least one auxiliary region having auxiliary structures corresponding to the unmasked portions of at least one auxiliary portion.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 10, 2020
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Chien-An CHEN, Pinkesh Rohit SHAH
  • Publication number: 20200386911
    Abstract: Embodiments described herein relate to methods for fabricating optical devices. The methods described herein enable the fabrication of one or more optical devices on a substrate with apertures surrounding each of the optical devices having a plurality of structures. One embodiment of the methods described herein includes disposing an aperture material layer on a surface of a substrate, disposing a structure material layer over the apertures and the surface of the substrate, disposing a hardmask over the apertures and the structure material layer, disposing a patterned photoresist over the hardmask, the patterned photoresist defining exposed hardmask portions, removing the exposed hardmask portions to expose structure portions of the structure material layer, and removing the structure portions to form a plurality of structures between the apertures over regions of the surface of the substrate.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 10, 2020
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Chien-An CHEN, Pinkesh Rohit SHAH
  • Publication number: 20200388642
    Abstract: An imaging system and a method of creating composite images are provided. The imaging system includes one or more lens assemblies coupled to a sensor. When reflected light from an object enters the imaging system, incident light on the metalens filter systems creates filtered light, which is turned into composite images by the corresponding sensors. Each metalens filter system focuses the light into a specific wavelength, creating the metalens images. The metalens images are sent to the processor, wherein the processor combines the metalens images into one or more composite images. The metalens images are combined into a composite image, and the composite image has reduced chromatic aberrations.
    Type: Application
    Filed: April 27, 2020
    Publication date: December 10, 2020
    Inventors: Jinxin FU, Yongan XU, Ludovic GODET, Naamah ARGAMAN, Robert Jan VISSER
  • Publication number: 20200373188
    Abstract: Embodiments described herein relate to a substrate chucking apparatus having a plurality of cavities formed therein. The cavities are formed in a body of the chucking apparatus. In one embodiment, a first plurality of ports are formed in a chucking surface of the body and extend to a bottom surface of the body. In another embodiment, a second plurality of ports are formed in a bottom surface of the plurality of cavities and extend through the body to a bottom surface of the body.
    Type: Application
    Filed: August 13, 2020
    Publication date: November 26, 2020
    Inventors: Joseph YUDOVSKY, Visweswaren SIVARAMAKRISHNAN, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN
  • Patent number: 10845715
    Abstract: Implementations described herein relate to apparatus for post exposure processing. More specifically, implementations described herein relate to field-guided post exposure process chambers and cool down/development chambers used on process platforms. In one implementation, a plurality of post exposure process chamber and cool/down development chamber pairs are positioned on a process platform in a stacked arrangement and utilize a shared plumbing module. In another implementation, a plurality of post exposure process chamber and cool down/development chambers are positioned on a process platform in a linear arrangement and each of the chambers utilize an individually dedicated plumbing module.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: November 24, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Viachslav Babayan, Ludovic Godet, Kyle M. Hanson, Robert B. Moore
  • Publication number: 20200363719
    Abstract: A method for forming a device structure is disclosed. The method of forming the device structure includes forming a variable-depth structure in a device material layer using cyclic-etch process techniques. A plurality of device structures is formed in the variable-depth structure to define vertical or slanted device structures therein. The variable-depth structure and the vertical or slanted device structures are formed using an etch process.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 19, 2020
    Inventors: Andre P. LABONTE, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN
  • Patent number: 10825665
    Abstract: Embodiments of the disclosure include apparatus and methods for modifying a surface of a substrate using a surface modification process. The process of modifying a surface of a substrate generally includes the alteration of a physical or chemical property and/or redistribution of a portion of an exposed material on the surface of the substrate by use of one or more energetic particle beams while the substrate is disposed within a particle beam modification apparatus. Embodiments of the disclosure also provide a surface modification process that includes one or more pre-modification processing steps and/or one or more post-modification processing steps that are all performed within one processing system.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: November 3, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Ludovic Godet, Huixiong Dai, Srinivas D. Nemani, Ellie Y. Yieh, Nitin Krishnarao Ingle