Patents by Inventor Ludovic Godet

Ludovic Godet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230280511
    Abstract: Embodiments of the present disclosure relate to methods for fabricating optical devices. One embodiment of the method includes disposing a structure material layer on a surface of a substrate and disposing a patterned photoresist over the structure material layer. The patterned photoresist has at least one device portion and at least one auxiliary portion. Each device portion and each auxiliary portion exposes unmasked portions of the structure material layer. The unmasked portions of structure material layer corresponding to each device portion and each auxiliary portion are etched. The etching the unmasked portions forms at least one optical device having device structures corresponding to the unmasked portions of at least one device portion and at least one auxiliary region having auxiliary structures corresponding to the unmasked portions of at least one auxiliary portion.
    Type: Application
    Filed: May 10, 2023
    Publication date: September 7, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Sage Toko Garrett DOSHAY, Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET, Chien-An CHEN, Pinkesh Rohit SHAH
  • Patent number: 11748875
    Abstract: Embodiments of the present disclosure relate to optical devices for augmented, virtual, and/or mixed reality applications. In one or more embodiments, an optical device metrology system is configured to measure a plurality of see-through metrics for optical devices.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: September 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yangyang Sun, Jinxin Fu, Kazuya Daito, Ludovic Godet
  • Publication number: 20230273355
    Abstract: Methods of dicing optical devices from an optical device substrate are disclosed. The methods include disposing a protective coating only over the optical devices. The optical device substrate includes the optical devices disposed on the surface of the optical device substrate with areas therebetween. The areas of the optical device substrate are exposed by the protective coating. The protective coating includes a polymer, a solvent, and an additive. The methods further include curing the protective coating via a cure process so that the protective coating is water-soluble after the solvent is removed by the cure process, dicing the optical devices from the optical device substrate by projecting a laser beam to the areas between the optical devices, and exposing the protective coating to water to remove the protective coating from the optical devices that are diced.
    Type: Application
    Filed: February 23, 2023
    Publication date: August 31, 2023
    Inventors: Yingdong LUO, Kangkang WANG, Wei-Sheng LEI, Xiaopei DENG, Erica CHEN, Kang LUO, Daihua ZHANG, Rami HOURANI, Ludovic GODET
  • Patent number: 11739418
    Abstract: A structure including a metal nitride layer is formed on a workpiece by pre-conditioning a chamber that includes a metal target by flowing nitrogen gas and an inert gas at a first flow rate ratio into the chamber and igniting a plasma in the chamber before placing the workpiece in the chamber, evacuating the chamber after the preconditioning, placing the workpiece on a workpiece support in the chamber after the preconditioning, and performing physical vapor deposition of a metal nitride layer on the workpiece in the chamber by flowing nitrogen gas and the inert gas at a second flow rate ratio into the chamber and igniting a plasma in the chamber. The second flow rate ratio is less than the first flow rate ratio.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: August 29, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Zihao Yang, Nag B. Patibandla, Ludovic Godet, Yong Cao, Daniel Lee Diehl, Zhebo Chen
  • Patent number: 11735420
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: August 22, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Patent number: 11733533
    Abstract: The systems and methods discussed herein are for the fabrication of diffraction gratings, such as those gratings used in waveguide combiners. The waveguide combiners discussed herein are fabricated using nanoimprint lithography (NIL) of high-index and low-index materials in combination with and directional etching high-index and low-index materials. The waveguide combiners can be additionally or alternatively formed by the directional etching of transparent substrates. The waveguide combiners that include diffraction gratings discussed herein can be formed directly on permanent transparent substrates. In other examples, the diffraction gratings can be formed on temporary substrates and transferred to a permanent, transparent substrate.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: August 22, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Ludovic Godet, Wayne Mcmillan, Rutger Meyer Timmerman Thijssen
  • Patent number: 11725274
    Abstract: Embodiments described herein relate to apparatus and methods for processing a substrate. In one embodiment, a cluster tool apparatus is provided having a transfer chamber and a pre-clean chamber, a self-assembled monolayer (SAM) deposition chamber, an atomic layer deposition (ALD) chamber, and a post-processing chamber disposed about the transfer chamber. A substrate may be processed by the cluster tool and transferred between the pre-clean chamber, the SAM deposition chamber, the ALD chamber, and the post-processing chamber. Transfer of the substrate between each of the chambers may be facilitated by the transfer chamber which houses a transfer robot.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: August 15, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Tobin Kaufman-Osborn, Srinivas D. Nemani, Ludovic Godet, Qiwei Liang, Adib Khan
  • Publication number: 20230253206
    Abstract: Embodiments of the present disclosure generally relate to methods for forming features having small and large line widths on the same substrate or device. In some embodiments, the methods described and discussed herein can be used to produce optical and photonic devices. These devices, including augmented reality (AR) devices and/or virtual reality (VR) devices, have desired pattern areas with different features and/or line widths to achieve the desired optical performance.
    Type: Application
    Filed: November 17, 2022
    Publication date: August 10, 2023
    Inventors: Yongan XU, Wei WU, Ludovic GODET
  • Publication number: 20230251161
    Abstract: Embodiments described herein relate to an optical device metrology system including a light source to emit a light and a non-polarizing beam splitter to split the light into a first photodetector light path and an optical light path. A first photodetector is disposed in the first photodetector light path and measures a total power of the light. The optical device substrate is disposed in the optical light path and splits the light into a second and a third photodetector light path. A second photodetector is disposed in the second photodetector light path from the optical device substrate. The second photodetector measures a reflected power of the light. A third photodetector is disposed in the third photodetector light path. The third photodetector measures a transmitted power of the light. The controller receives measurements from the first, second, and third photodetectors to calculate a percentage light loss within the optical device substrate.
    Type: Application
    Filed: February 2, 2023
    Publication date: August 10, 2023
    Inventors: Baochen WU, Yangyang SUN, Ravi KOMANDURI, Jinxin FU, Ludovic GODET
  • Publication number: 20230235447
    Abstract: Embodiments of the present disclosure generally relate to composite PVD target. The target has a diameter, a connection face, a substrate face opposite the connection face, a thickness between the connection face and the substrate face, and a material distribution. The material distribution includes a silicon containing material arranged in a pattern, and a titanium containing material arranged in the pattern. The material distribution is uniform at any point along the thickness.
    Type: Application
    Filed: January 20, 2023
    Publication date: July 27, 2023
    Inventors: Kenichi OHNO, Takashi KURATOMI, Ludovic GODET
  • Publication number: 20230230991
    Abstract: An imaging system and a method of creating composite images are provided. The imaging system includes one or more lens assemblies coupled to a sensor. When reflected light from an object enters the imaging system, incident light on the metalens filter systems creates filtered light, which is turned into composite images by the corresponding sensors. Each metalens filter system focuses the light into a specific wavelength, creating the metalens images. The metalens images are sent to the processor, wherein the processor combines the metalens images into one or more composite images. The metalens images are combined into a composite image, and the composite image has reduced chromatic aberrations.
    Type: Application
    Filed: March 17, 2023
    Publication date: July 20, 2023
    Inventors: Jinxin FU, Yongan XU, Ludovic GODET, Naamah ARGAMAN, Robert Jan VISSER
  • Publication number: 20230229086
    Abstract: A method and apparatus for curing a substrate are described. The apparatus includes a curing apparatus with a casing and an ultraviolet (UV) radiation assembly coupled to the casing. The ultraviolet radiation assembly further includes a line UV radiation source. The casing includes an opening on one end. A substrate passes by the opening and is exposed to the UV radiation of the line UV radiation source. The curing apparatus further includes a purge assembly configured to continuously purge the process volume and the volume directly above the exposed portion of the substrate. The curing apparatus is configured to only cure a portion of the substrate at any one point in time, such that the curing apparatus is a scanning curing apparatus and includes a small process volume.
    Type: Application
    Filed: December 21, 2022
    Publication date: July 20, 2023
    Inventors: Michael David-Scott KEMP, Daihua ZHANG, Ludovic GODET, Mahendran CHIDAMBARAM, Sumedh Dattatraya ACHARYA
  • Publication number: 20230221484
    Abstract: Embodiments described herein provide for methods of forming angled optical device structures. The methods described herein utilize etching a mandrel material with an etch chemistry that is selective to the hardmask, i.e., the mandrel material is etched at a higher rate than the hardmask. Therefore, mandrel trenches are formed in the mandrel material. Device material of the angled optical device structures to be formed is deposited on the plurality of angled mandrels. An angled etch process is performed on portions of the device material such that the angled optical device structures are formed.
    Type: Application
    Filed: January 10, 2022
    Publication date: July 13, 2023
    Inventors: Rutger MEYER TIMMERMAN THIJSSEN, Ludovic GODET
  • Publication number: 20230212739
    Abstract: Embodiments of the present disclosure generally relate to processing an optical workpiece containing grating structures on a substrate by deposition processes, such as atomic layer deposition (ALD). In one or more embodiments, a method for processing an optical workpiece includes positioning a substrate containing a first layer within a processing chamber, where the first layer contains grating structures separated by trenches formed in the first layer, and each of the grating structures has an initial critical dimension, and depositing a second layer on at least the sidewalls of the grating structures by ALD to produce corrected grating structures separated by the trenches, where each of the corrected grating structures has a corrected critical dimension greater than the initial critical dimension.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 6, 2023
    Inventors: Jinrui GUO, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20230213693
    Abstract: A method of forming patterned features on a substrate is provided. The method includes positioning a plurality of masks arranged in a mask layout over a substrate. The substrate is positioned in a first plane and the plurality of masks are positioned in a second plane, the plurality of masks in the mask layout have edges that each extend parallel to the first plane and parallel or perpendicular to an alignment feature on the substrate, the substrate includes a plurality of areas configured to be patterned by energy directed through the masks arranged in the mask layout. The method further includes directing energy towards the plurality of areas through the plurality of masks arranged in the mask layout over the substrate to form a plurality of patterned features in each of the plurality of areas.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Yongan XU, Rutger MEYER TIMMERMAN THIJSSEN, Jinrui GUO, Ludovic GODET
  • Publication number: 20230203647
    Abstract: Embodiments of the present disclosure relate to forming multi-depth films for the fabrication of optical devices. One embodiment includes disposing a base layer of a device material on a surface of a substrate. One or more mandrels of the device material are disposed on the base layer. The disposing the one or more mandrels includes positioning a mask over of the base layer. The device material is deposited with the mask positioned over the base layer to form an optical device having the base layer with a base layer depth and the one or more mandrels having a first mandrel depth and a second mandrel depth.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 29, 2023
    Inventors: Karl J. ARMSTRONG, Ludovic GODET, Brian Alexander COHEN, Wayne MCMILLAN, James D. STRASSNER, Benjamin B. RIORDON
  • Publication number: 20230193064
    Abstract: A method and apparatus for forming an optical device are described. The optical device is formed by depositing a plurality of ink drops on a surface of a substrate. The plurality of ink drops are contained within a chemical stopper, such that the chemical stopper surrounds each individual ink drop. The chemical stopper is configured to reduce reflow of the ink drops and is a fraction of the height of each of the ink drops. The ink drops are baked after being deposited within the chemical stoppers as liquid ink drops.
    Type: Application
    Filed: November 18, 2022
    Publication date: June 22, 2023
    Inventors: Yingdong LUO, Xiaopei DENG, Kang LUO, Rami HOURANI, Daihua ZHANG, Ludovic GODET
  • Publication number: 20230194982
    Abstract: Embodiments described herein provide method a method of forming optical devices using nanoimprint lithography that maintains the critical dimension of the optical device structures. The method described herein accounts for lateral shrinkage of the solvent based resist during the cure process to maintain the critical dimension. The method includes disposing a stamp coating on a stamp having an inverse optical device pattern of inverse structures. The coating is disposed on sidewalls, inverse structure bottom, and inverse structure top of the inverse structures. The method includes etching the inverse structures such that the stamp coating remains on the sidewalls and is removed from the inverse structure top and bottom. The method further includes imprinting the stamp into an optical device material disposed and subjecting the imprintable optical device material to a cure process which transfers the optical device critical dimension to the optical device structures of the optical device pattern.
    Type: Application
    Filed: December 30, 2022
    Publication date: June 22, 2023
    Inventors: Yingdong LUO, Yongan XU, Kang LUO, Ludovic GODET
  • Publication number: 20230192971
    Abstract: Methods of curing a deformation in a substrate are provided. In some embodiments, the method includes identifying one or more areas on the substrate with deformation. The method further includes printing a first film on a first area of a surface of the substrate via inkjet printing, the first film being a material that polymerizes and contracts when cured. The method includes printing a second film on a second area of the surface of the substrate via inkjet printing, the second film being a material that polymerizes and contracts when cured. The method further includes curing the first film and the second film to induce a bend in the substrate. In some embodiments, the method includes inkjet printing a third film and a fourth film on the surface of the substrate.
    Type: Application
    Filed: December 20, 2022
    Publication date: June 22, 2023
    Inventors: Yingdong LUO, Xiaopei DENG, Kang LUO, Rami HOURANI, Daihua ZHANG, Ludovic GODET
  • Patent number: 11681083
    Abstract: Embodiments of the present disclosure relate to methods for fabricating optical devices. One embodiment of the method includes disposing a structure material layer on a surface of a substrate and disposing a patterned photoresist over the structure material layer. The patterned photoresist has at least one device portion and at least one auxiliary portion. Each device portion and each auxiliary portion exposes unmasked portions of the structure material layer. The unmasked portions of structure material layer corresponding to each device portion and each auxiliary portion are etched. The etching the unmasked portions forms at least one optical device having device structures corresponding to the unmasked portions of at least one device portion and at least one auxiliary region having auxiliary structures corresponding to the unmasked portions of at least one auxiliary portion.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: June 20, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sage Toko Garrett Doshay, Rutger Meyer Timmerman Thijssen, Ludovic Godet, Chien-An Chen, Pinkesh Rohit Shah