Patents by Inventor Luhan Yang

Luhan Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230348910
    Abstract: Described herein are compositions and methods for modifying and targeting genes. Also described herein are compositions and methods for modifying and targeting genes in a cell or a non-human mammal.
    Type: Application
    Filed: March 22, 2023
    Publication date: November 2, 2023
    Inventors: Luhan Yang, Yangbin Gao
  • Publication number: 20230338528
    Abstract: The present disclosure describes systems and methods for immunotherapies Immune cells can be engineered to exhibit enhanced half-life as compared to control cell (e.g., a non-engineered immune cell). Immune cells can be engineered to exhibit enhanced proliferation as compared to a control cell. Immune cells can be engineered to effectively and specifically target diseased cells (e.g., cancer cells) that a control cell otherwise is insufficient or unable to target. The engineered Immune cells disclosed herein can be engineered ex vivo, in vitro, and in some cases, in vivo. The engineered Immune cells that are prepared ex vivo or in vitro can be administered to a subject in need thereof to treat a disease (e.g., myeloma or solid tumors). The engineered Immune cells can be autologous to the subject. Alternatively, the engineered immune cells can be allogeneic to the subject.
    Type: Application
    Filed: May 2, 2023
    Publication date: October 26, 2023
    Inventors: Yangbin Gao, Xiangjun He, Yixuan Zhou, Chenyang Liao, Jiabiao Hu, Jing Xu, Yanan Yue, Luhan Yang
  • Publication number: 20230295653
    Abstract: A method of altering a eukaryotic cell is provided including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
    Type: Application
    Filed: April 6, 2023
    Publication date: September 21, 2023
    Inventors: George M. Church, Prashant G. Mali, Luhan Yang
  • Patent number: 11746349
    Abstract: Methods and compositions of altering a eukaryotic cell are described including providing to the eukaryotic cell a guide DNA sequence complementary to a target nucleic acid sequence, providing to the eukaryotic cell an Ago enzyme or a nuclease null Ago protein that interacts with the guide DNA sequence for DNA-guided gene editing and regulation of the target nucleic acid sequence in a site specific manner.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: September 5, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Luhan Yang, Margo R. Monroe, Po-Yi Huang
  • Publication number: 20230056661
    Abstract: Described here are methods, compositions, and systems for generating transgenic islet cells suitable for xenotransplantation.
    Type: Application
    Filed: January 7, 2021
    Publication date: February 23, 2023
    Inventors: Yangbin GAO, Yanan YUE, Luhan YANG, Marc GUELL, Yinan KAN, Wenning QIN
  • Patent number: 11535863
    Abstract: A method of altering a eukaryotic cell is provided including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: December 27, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Prashant G. Mali, Luhan Yang
  • Patent number: 11512325
    Abstract: A method of altering a eukaryotic cell is provided including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: November 29, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Prashant G. Mali, Luhan Yang
  • Publication number: 20220267805
    Abstract: Provided are cells, tissues, organs, and/or animals having one or more modified genes for enhanced xenograft survival and/or tolerance. And methods of producing and using the cells, tissues, organs, and/or animals.
    Type: Application
    Filed: May 15, 2020
    Publication date: August 25, 2022
    Inventors: Luhan YANG, Yangbin GAO, Marc GUELL, Yinan KAN, Wenning QIN
  • Publication number: 20220235382
    Abstract: Methods are provided for altering target DNA in a cell genetically modified to express a Cas 9 enzyme that forms a co-localization complex with a guide RNA complementary to the target DNA and that cleaves the target DNA in a site specific manner Methods include introducing into the cell a first foreign nucleic acid encoding a donor nucleic acid sequence, introducing into the cell from media surrounding the cell the guide RNA complementary to the target DNA and which guides the Cas 9 enzyme to the target DNA, wherein the RNA and the enzyme are members of a co-localization complex for the target DNA, wherein the donor nucleic acid sequence is expressed, wherein the guide RNA and the Cas 9 enzyme co-localize to the target DNA, the Cas 9 enzyme cleaves the target DNA and the donor nucleic acid is inserted into the target DNA to produce altered DNA in the cell.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 28, 2022
    Inventors: George M. Church, Luhan Yang, Marc Guell, Joyce Lichi Yang
  • Patent number: 11365429
    Abstract: A method of altering a eukaryotic cell is provided including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 21, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Prashant G. Mali, Luhan Yang
  • Patent number: 11359211
    Abstract: A method of altering a eukaryotic cell is provided including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: June 14, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Prashant G. Mali, Luhan Yang
  • Publication number: 20220177913
    Abstract: A method of altering a eukaryotic cell is provided including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
    Type: Application
    Filed: February 16, 2022
    Publication date: June 9, 2022
    Inventors: George M. Church, Prashant G. Mali, Luhan Yang
  • Patent number: 11306328
    Abstract: Methods are provided for altering target DNA in a cell genetically modified to express a Cas 9 enzyme that forms a co-localization complex with a guide RNA complementary to the target DNA and that cleaves the target DNA in a site specific manner. Methods include introducing into the cell a first foreign nucleic acid encoding a donor nucleic acid sequence, introducing into the cell from media surrounding the cell the guide RNA complementary to the target DNA and which guides the Cas 9 enzyme to the target DNA, wherein the RNA and the enzyme are members of a co-localization complex for the target DNA, wherein the donor nucleic acid sequence is expressed, wherein the guide RNA and the Cas 9 enzyme co-localize to the target DNA, the Cas 9 enzyme cleaves the target DNA and the donor nucleic acid is inserted into the target DNA to produce altered DNA in the cell.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: April 19, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Luhan Yang, Marc Guell, Joyce Lichi Yang
  • Patent number: 11236359
    Abstract: A method of altering a eukaryotic cell is provided including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: February 1, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Prashant G. Mali, George M. Church, Luhan Yang
  • Patent number: 11208652
    Abstract: Methods and compositions of altering mitochondrial DNA of a eukaryotic cell are provided using one or more of a mitochondrial specific adeno-associated virus to deliver one or more nucleic acids encoding CRISPR system including a Cas9 protein or its nuclease inactive variant and a guide RNA into a mitochondria for expression within the mitochondria. The Cas9 system can cut, nick or regulate a target mitochondrial nucleic acid.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: December 28, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Luhan Yang, Margo R. Monroe
  • Publication number: 20210222193
    Abstract: A method of altering a eukaryotic cell is provided including transfecting the eukaryotic cell with a nucleic acid encoding RNA complementary to genomic DNA of the eukaryotic cell, transfecting the eukaryotic cell with a nucleic acid encoding an enzyme that interacts with the RNA and cleaves the genomic DNA in a site specific manner, wherein the cell expresses the RNA and the enzyme, the RNA binds to complementary genomic DNA and the enzyme cleaves the genomic DNA in a site specific manner.
    Type: Application
    Filed: February 26, 2021
    Publication date: July 22, 2021
    Inventors: George M. Church, Prashant G. Mali, Luhan Yang
  • Patent number: 11064684
    Abstract: A method of modulating some or all copies of a gene in a cell is provided including introducing into a cell one or more ribonucleic acid (RNA) sequences that comprise a portion that is complementary to all or a portion of each of the one or more target nucleic acid sequences, and a nucleic acid sequence that encodes a Cas protein and maintaining the cells under conditions in which the Cas protein is expressed and the Cas protein binds and modulates the one or more target nucleic acid sequences in the cell.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: July 20, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Luhan Yang, Marc Guell
  • Publication number: 20210189388
    Abstract: Methods and compositions of altering a eukaryotic cell are described including providing to the eukaryotic cell a guide DNA sequence complementary to a target nucleic acid sequence, providing to the eukaryotic cell an Ago enzyme or a nuclease null Ago protein that interacts with the guide DNA sequence for DNA-guided gene editing and regulation of the target nucleic acid sequence in a site specific manner.
    Type: Application
    Filed: February 7, 2017
    Publication date: June 24, 2021
    Applicants: President and Fellows of Harvard College, President and Fellows of Harvard College
    Inventors: George M. Church, Luhan Yang, Margo R. Monroe, Po-Yi Huang
  • Publication number: 20210100225
    Abstract: A method of modulating some or all copies of a gene in a cell is provided including introducing into a cell one or more ribonucleic acid (RNA) sequences that comprise a portion that is complementary to all or a portion of each of the one or more target nucleic acid sequences, and a nucleic acid sequence that encodes a Cas protein and maintaining the cells under conditions in which the Cas protein is expressed and the Cas protein binds and modulates the one or more target nucleic acid sequences in the cell.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 8, 2021
    Inventors: George M. Church, Luhan Yang, Marc Guell
  • Patent number: 10959413
    Abstract: A method of modulating some or all copies of a gene in a cell is provided including introducing into a cell one or more ribonucleic acid (RNA) sequences that comprise a portion that is complementary to all or a portion of each of the one or more target nucleic acid sequences, and a nucleic acid sequence that encodes a Cas protein and maintaining the cells under conditions in which the Cas protein is expressed and the Cas protein binds and modulates the one or more target nucleic acid sequences in the cell.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: March 30, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Luhan Yang, Marc Guell