Patents by Inventor Lukas Bluecher

Lukas Bluecher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11103340
    Abstract: Bio-selective textured surfaces are described which mediate foreign body response, bacterial adhesion, and tissue adhesion on devices implanted in a mammalian body. Hierarchical levels of texture, some capable of establishing a Wenzel state others a Cassie state, are employed to interface with living structures, either to promote or discourage a particular biological response/interaction. Since a gaseous state is traditionally required to establish a Cassie or Wenzel state, and gases do not remain long in living tissue, described are tissue/device interactions analogous to the above states with the component normally represented by a gas replaced by a bodily constituent, wherein separation of tissue constituents develops and a desired interaction state evolves.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: August 31, 2021
    Assignee: BVW HOLDING AG
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20210252195
    Abstract: Polymer devices are disclosed with microstructured surfaces that modify their absorption pathway. Polymers which generally degrade in water by fracturing into high surface energy fragments, are modified to degrade in vivo without the formation of sharp fragments. Devices are disclosed that possess improved handling characteristics and degrade in an aqueous environment in a uniform and continuous way that favors the formation of soluble monomers rather than solid particulate. Absorbable medical implants with the disclosed surface modifications are more biocompatible, with reduced foreign body response, and dissolution into metabolizable molecular species.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 19, 2021
    Inventors: Lukas Bluecher, Kenneth Kleinhenz, Michael Milbocker
  • Publication number: 20210251318
    Abstract: The present disclosure provides microstructured hydrophobic surfaces and devices for gripping wet deformable surfaces. The surfaces and devices disclosed herein utilize a split contact Wenzel-Cassie mechanism to develop multi-level Wenzel-Cassie structures. The Wenzel-Cassie structures are separated with a spatial period corresponding to at least one wrinkle eigenmode of a wet deformable surface to which the microstructure or device is designed to contact, allowing grip of the deformable surface without slippage. Microstructures of the present invention are specifically designed to prevent the formation of Shallamach waves when a shear force is applied to a deformable surface. The multi-level Wenzel-Cassie states of the present disclosure develop temporally, and accordingly are characterized by hierarchical fluid pinning, both in the instance of slippage, and more importantly in the instance of localization.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventors: Michael Milbocker, Lukas Bluecher
  • Patent number: 11051567
    Abstract: The present disclosure provides microstructured hydrophobic surfaces and devices for gripping wet deformable surfaces. The surfaces and devices disclosed herein utilize a split contact Wenzel-Cassie mechanism to develop multi-level Wenzel-Cassie structures. The Wenzel-Cassie structures are separated with a spatial period corresponding to at least one wrinkle eigenmode of a wet deformable surface to which the microstructure or device is designed to contact, allowing grip of the deformable surface without slippage. Microstructures of the present invention are specifically designed to prevent the formation of Shallamach waves when a shear force is applied to a deformable surface. The multi-level Wenzel-Cassie states of the present disclosure develop temporally, and accordingly are characterized by hierarchical fluid pinning, both in the instance of slippage, and more importantly in the instance of localization.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 6, 2021
    Assignee: BVW Holding AG
    Inventors: Michael Milbocker, Lukas Bluecher
  • Publication number: 20210186720
    Abstract: The present disclosure provides stents, particularly self-expanding stents, useful for the GI tract, and more particularly, useful for treating esophageal strictures. The stents provided herein include a medial region and proximal and distal cuffs having external diameters greater than the medial region diameter when the stent is in the deployed state. The medial region comprises an open weave wire construction. An elastomeric coating circumscribes the medial region, while the may be an extension of the wire construction or separate elements. Preferably, the cuffs have a textured surface for contact with the esophageal wall tissue to resist stent migration. The elastomer coated medial region provides a barrier to tissue ingrowth, and has an enhanced radial restoring force to maintain an open passageway in a body lumen. Optionally, the stent includes an exterior sheath with a surface pattern, to which the stent couples.
    Type: Application
    Filed: July 30, 2020
    Publication date: June 24, 2021
    Inventors: Lukas Bluecher, Michael Milbocker, Roel Trip
  • Patent number: 11013827
    Abstract: The invention relates to the field of tissue engineering and regenerative medicine, and particularly to a three-dimensional biomimetic tissue scaffold that exploits the use of three-dimensional print technology. Surface energy is controlled by precisely placing polymers with differing surface chemistry, and using surface texture and bulk composition to pattern absorbable and non-absorbable polymers for the purpose of promoting functional healing in a mammalian body.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: May 25, 2021
    Assignee: BVW Holding AG
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20210130157
    Abstract: The present application relates to multifunctional hierarchically microstructured surfaces and three-dimensional anchored interfacial domain structures. The multifunctional properties are extremal. In one aspect the microstructured surfaces may be super-adhesive. Examples of super-adhesive mechanisms may include gas trapping, fluid trapping, and solid wrinkle trapping. In another aspect the micro structured surfaces may be nearly adhesive-less. Examples of adhesive-less mechanisms may include inter-solid surface lubrication, energy conserving fluid flows, and super-low drag phase-phase lateral displacement. The extremal structures may be obtained by anchoring mechanisms. Examples of anchoring mechanisms may include Wenzel-Cassie formation, contact angle confusion, and capillary effects.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Inventors: Lukas Bluecher, Michael Milbocker
  • Patent number: 10953138
    Abstract: Polymer devices are disclosed with microstructured surfaces that modify their absorption pathway. Polymers which generally degrade in water by fracturing into high surface energy fragments, are modified to degrade in vivo without the formation of sharp fragments. Devices are disclosed that possess improved handling characteristics and degrade in an aqueous environment in a uniform and continuous way that favors the formation of soluble monomers rather than solid particulate. Absorbable medical implants with the disclosed surface modifications are more biocompatible, with reduced foreign body response, and dissolution into metabolizable molecular species.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 23, 2021
    Assignee: BVW HOLDING AG
    Inventors: Lukas Bluecher, Kenneth Kleinhenz, Michael Milbocker
  • Publication number: 20200330505
    Abstract: The present disclosure relates to compositions A composition comprising a polymerization product of an anionic polysaccharide, a diisocyanate, and a linker, wherein the linker comprises i) an ether group, an ester group, or a combination thereof and, ii) a chain extender comprising a hydroxyl group, a thiol group, an amine group, or a combination thereof. The disclosure further relates to medical devices comprising the aforementioned compositions, and to methods of using the compositions and devices. More particularly, the compositions, devices and methods described herein are useful for preventing protein adhesions in vivo, particularly the Vroman effect.
    Type: Application
    Filed: May 5, 2020
    Publication date: October 22, 2020
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20200316265
    Abstract: Disclosed are hydrogels polymerized with or around a solid biofunctional moiety, biodegradable or permanent, designed to be implantable in a mammalian body, intended to block or mitigate the formation of tissue adhesions, and intended to aid in functional healing. The hydrogels of the present invention are characterized by comprising multiphasic structural elements: a) at least one gel phase, b) at least one solid phase, c) optional polymeric chains connecting gel and solid phases, d) optional shape designs that provide for an interpenetrating geometry between gels and solids, e) optional shape designs that enhance a tissue-hydrogel interface, and f) optional shape designs that provide a biofunctional aspect. The hydrophobicity of the various phases is chosen to reduce tissue adhesion and enhance tissue healing. The morphology of the polymers comprising the gel phase is typically of high molecular weight and has morphology that encourages entanglement.
    Type: Application
    Filed: April 30, 2020
    Publication date: October 8, 2020
    Inventors: Lukas Bluecher, Michael Milbocker
  • Patent number: 10758380
    Abstract: The present disclosure provides stents, particularly self-expanding stents, useful for the GI tract, and more particularly, useful for treating esophageal strictures. The stents provided herein include a medial region and proximal and distal cuffs having external diameters greater than the medial region diameter when the stent is in the deployed state. The medial region comprises an open weave wire construction. An elastomeric coating circumscribes the medial region, while the may be an extension of the wire construction or separate elements. Preferably, the cuffs have a textured surface for contact with the esophageal wall tissue to resist stent migration. The elastomer coated medial region provides a barrier to tissue ingrowth, and has an enhanced radial restoring force to maintain an open passageway in a body lumen. Optionally, the stent includes an exterior sheath with a surface pattern, to which the stent couples.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: September 1, 2020
    Assignee: BVW Holding AG
    Inventors: Lukas Bluecher, Michael Milbocker, Roel Trip
  • Patent number: 10675297
    Abstract: The present disclosure relates to compositions A composition comprising a polymerization product of an anionic polysaccharide, a diisocyanate, and a linker, wherein the linker comprises i) an ether group, an ester group, or a combination thereof and, ii) a chain extender comprising a hydroxyl group, a thiol group, an amine group, or a combination thereof. The disclosure further relates to medical devices comprising the aforementioned compositions, and to methods of using the compositions and devices. More particularly, the compositions, devices and methods described herein are useful for preventing protein adhesions in vivo, particularly the Vroman effect.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: June 9, 2020
    Assignee: BVW Holding AG
    Inventors: Lukas Bluecher, Michael Milbocker
  • Patent number: 10668190
    Abstract: Disclosed are hydrogels polymerized with or around a solid biofunctional moiety, biodegradable or permanent, designed to be implantable in a mammalian body, intended to block or mitigate the formation of tissue adhesions, and intended to aid in functional healing. The hydrogels of the present invention are characterized by comprising multiphasic structural elements: a) at least one gel phase, b) at least one solid phase, c) optional polymeric chains connecting gel and solid phases, d) optional shape designs that provide for an interpenetrating geometry between gels and solids, e) optional shape designs that enhance a tissue-hydrogel interface, and f) optional shape designs that provide a biofunctional aspect. The hydrophobicity of the various phases is chosen to reduce tissue adhesion and enhance tissue healing. The morphology of the polymers comprising the gel phase is typically of high molecular weight and has morphology that encourages entanglement.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: June 2, 2020
    Assignee: BVW Holding AG
    Inventors: Michael Milbocker, Lukas Bluecher
  • Publication number: 20200155292
    Abstract: A device comprising a microstructured surface wherein in one aspect, the microstructured surface is arranged hierarchically with dual-functioning textured features. The surface may achieve adhesive properties by varying the parameters of the microstructure features. Additionally, the surface may achieve cellular and/or tissues in-growth functionality by varying the same parameters. Generally, the dual-functional aspect includes at least one surface feature having a varied periodicity which may be imposed on at least one other surface feature.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 21, 2020
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20200155750
    Abstract: The present invention discloses a microstructured discrimination device for separating hydrophobic-hydrophilic fluidic composites comprising particulate and/or fluids in a fluid flow. The discrimination is the result of surface energy gradients obtained by physically varying a textured surface and/or by varying surface chemical properties, both of which are spatially graded. Such surfaces discriminate and spatially separate particulate and/or fluids without external energy input. The device of the present invention comprises a platform having bifurcating microchannels arranged radially. The lumenal surfaces of the microchannels may have a surface energy gradient created by varying the periodicity of hierarchically arranged microstructures along a dimension. The surface energy gradient is varied in two regions. In one pre-bifurcation region the surface energy gradient generates a fluid flow.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 21, 2020
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20200113933
    Abstract: The present disclosure relates to compositions A composition comprising a polymerization product of an anionic polysaccharide, a diisocyanate, and a linker, wherein the linker comprises i) an ether group, an ester group, or a combination thereof and, ii) a chain extender comprising a hydroxyl group, a thiol group, an amine group, or a combination thereof. The disclosure further relates to medical devices comprising the aforementioned compositions, and to methods of using the compositions and devices. More particularly, the compositions, devices and methods described herein are useful for preventing protein adhesions in vivo, particularly the Vroman effect.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 16, 2020
    Applicant: BVW Holding AG
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20200069302
    Abstract: Retraction of one or more three-dimensional or planar amorphous objects is provided to gain access for a procedure where the retracted elements are easily damaged by application of normal forces. For example, a surgical instrument to provide access to an organ or tissue plane. Microtextured surfaces are provided that provide immobilization of amorphous objects, the immobilization of which is characterized by low normal forces and high shear or in plane forces. The retraction device is comprised of microstructured surfaces on one or more arms. Preferably these arms are soft and flexible to minimize damage to retracted objects. In some instances, these arms resemble and are used as a nonslip tape. Alternatively, parts or whole arms of the retraction device are rigid to provide a supportive aspect. These arms may be configured around a handle.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Inventors: Michael Milbocker, Lukas Bluecher
  • Publication number: 20200030124
    Abstract: The present disclosure provides an endoprosthesis where a preferably polymeric coating has a number of surface features such as protrusions or textures that are arranged in a micropattern. The endoprosthesis optionally has an expanded state and a contracted state, and in some cases includes a stent with a polymeric coating attached to an outer surface of the stent. The stent may have an inner surface defining a lumen, an outer surface, and a stent thickness defined between the inner surface and outer surface. The stent may comprise a plurality of surface textures extending from the stent surfaces, wherein the textures are arranged in a macropattern.
    Type: Application
    Filed: July 29, 2019
    Publication date: January 30, 2020
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20200032112
    Abstract: A microstructured pressure-sensitive surface is described comprising a Wenzel-Cassie hydrophilic-hydrophobic zone structure and capillary action with improved peel strength. The capillary action is enhanced by the Wenzel-Cassie zone creation, and the barrier energy to disruption of the Wenzel-Cassie zone is increased by the capillary action. The micro-structured surfaces of the present invention create water zones of exclusion, where entropic effects reinforce Wenzel-Cassie zone stability, creating a suction effect that conforms the microstructure surface to a target surface.
    Type: Application
    Filed: July 29, 2019
    Publication date: January 30, 2020
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20190388170
    Abstract: A glove with an enhanced gripping textured surface is disclosed herein. In preferred embodiments, the glove contains a palm region adapted to cover the palm of a person's hand, a thumb region extending outwardly from the palm region, an index finger region disposed adjacent the thumb region, a middle finger region adjacent the index finger region, a ring finger region adjacent the middle finger region, and a little finger region adjacent the ring finger region with each region containing a textured surface. In preferred embodiments, the textured surface is formed by a plurality of dimensionally hierarchical structures superimposed in layers. The textured surface of the invention, when in contact with wet tissue, repels water at a first texture layer and traps tissue at a second texture layer, such that when in tissue contact, especially exudative tissue, tissue fixatively localizes to the glove surface.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 26, 2019
    Inventors: Lukas Bluecher, Michael Milbocker