Patents by Inventor Lukas Bluecher

Lukas Bluecher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170021053
    Abstract: Disclosed are hydrogels polymerized with a biofunctional moiety, biodegradable and permanent, designed to be implantable in a mammalian body and intended to block or mitigate the formation of tissue adhesions. The hydrogels of the present invention are characterized by comprising four structural elements: a) a polymeric backbone which defines the overall polymeric morphology, b) linkage groups, c) side chains, and d) biofunctional end groups. The hydrophobicity of the various structural elements are chosen to reduce tissue adhesion and enhance the biofunctional aspect of the end groups. The morphology of these polymers are typically of high molecular weight and have shape to encourage entanglement. Useful structures include branching chains, comb or brush, and dendritic morphologies.
    Type: Application
    Filed: October 1, 2016
    Publication date: January 26, 2017
    Inventors: Lukas Bluecher, Michael Milbocker
  • Patent number: 9480747
    Abstract: Disclosed are hydrogels polymerized with a biofunctional moiety, biodegradable and permanent, designed to be implantable in a mammalian body and intended to block or mitigate the formation of tissue adhesions. The hydrogels of the present invention are characterized by comprising four structural elements: a) a polymeric backbone which defines the overall polymeric morphology, b) linkage groups, c) side chains, and d) biofunctional end groups. The hydrophobicity of the various structural elements are chosen to reduce tissue adhesion and enhance the biofunctional aspect of the end groups. The morphology of these polymers are typically of high molecular weight and have shape to encourage entanglement. Useful structures include branching chains, comb or brush, and dendritic morphologies.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: November 1, 2016
    Assignee: BVW Holding AG
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20140207251
    Abstract: Bio-selective textured surfaces are described which mediate foreign body response, bacterial adhesion, and tissue adhesion on devices implanted in a mammalian body. Hierarchical levels of texture, some capable of establishing a Wenzel state others a Cassie state, are employed to interface with living structures, either to promote or discourage a particular biological response/interaction. Since a gaseous state is traditionally required to establish a Cassie or Wenzel state, and gases do not remain long in living tissue, described are tissue/device interactions analogous to the above states with the component normally represented by a gas replaced by a bodily constituent, wherein separation of tissue constituents develops and a desired interaction state evolves.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 24, 2014
    Applicant: BVW HOLDING AG
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20140200679
    Abstract: Bio-adhesive textured surfaces are described which allow implants to be localized within a living body. Hierarchical levels of texture on an implantable medical device, some capable of establishing a Wenzel state and others a Cassie state, are employed to interface with living structures to provide resistance to device migration. Since a gaseous state is traditionally required to establish a Cassie or Wenzel state, and gases do not remain long in living tissue, described are tissue/device interactions analogous to the above states with the component normally represented by a gas replaced by a bodily constituent, wherein separation of tissue constituents develops and an analogous Cassie, Wenzel or Cassie-Wenzel state evolves.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 17, 2014
    Applicant: BVW HOLDING AG
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20130095161
    Abstract: The present disclosure relates to compositions A composition comprising a polymerization product of an anionic polysaccharide, a diisocyanate, and a linker, wherein the linker comprises i) an ether group, an ester group, or a combination thereof and, ii) a chain extender comprising a hydroxyl group, a thiol group, an amine group, or a combination thereof. The disclosure further relates to medical devices comprising the aforementioned compositions, and to methods of using the compositions and devices. More particularly, the compositions, devices and methods described herein are useful for preventing protein adhesions in vivo, particularly the Vroman effect.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 18, 2013
    Inventors: Lukas Bluecher, Michael Milbocker
  • Publication number: 20130052236
    Abstract: The present disclosure provides a medical assembly comprising a surgical barrier aspect comprising polylactic acid, and a hydrophilic mucoadhesive aspect, wherein the surgical barrier aspect is provided on a first side of the assembly and the mucoadhesive aspect is provided on a second side of the assembly. The disclosure also relates to a medical assembly comprising a surgical barrier aspect, a short term mucoadhesive aspect, an intermediate term protein polymerization adhesive aspect, and a long term tissue ingrowth implant localization aspect. The aforementioned medical assemblies may be provided as layered sheet structures. Also provided are methods for preparing a medical assembly.
    Type: Application
    Filed: August 29, 2012
    Publication date: February 28, 2013
    Applicant: MAST BIOSURGERY
    Inventors: Joerg Tessmar, Eva Esser, Lukas Bluecher, Michael Milbocker
  • Publication number: 20120039959
    Abstract: Described are mono- and bi-layer alginate post-surgical anti-adhesion barriers with tailored absorption profiles and non-migrating characteristics. Muco-adhesive properties of alginates in their solid state are used to localize the device, and lubricious properties of alginates in their liquid state are used to mitigate adhesion formation during wound healing. In addition, the design of the implant can be selected such that the crosslinking agent is released from the device under specific conditions and the absorbance profile modified. A medicinal agent may optionally be incorporated.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 16, 2012
    Inventors: Joerg TESSMAR, Eva Esser, Thomas Reintjes, Lukas Bluecher, Michael T. Milbocker
  • Publication number: 20120010726
    Abstract: Described are devices and methods for reinforcing a layer of living tissue, which when affixed to a tissue layer prior to surgical incision, reinforces the tissue to be incised, provides a fibro-conductive matrix to promote healing in a preferred plane, and provides for a subsequent closure and fluidic seal. A partially or entirely absorbable growth matrix is disclosed, comprising two adhesion-resistant layers enclosing a cellular conductive medium for promoting fibrosis in a preferred plane. The cellular conductive portion is partially or entirely sequestered from surrounding tissue. The device is constructed in a physiologic range of tensile strengths and elasticity suitable for closure of the pericardium, peritoneum, or other typically thin membranes enclosing organs in the body, whose function is to prevent adhesions between tissue surfaces normally in motion.
    Type: Application
    Filed: June 9, 2011
    Publication date: January 12, 2012
    Inventors: Lukas BLUECHER, Michael T. Milbocker, Christopher J. Calhoun
  • Publication number: 20100266663
    Abstract: A prosthesis for repairing a hernia includes an adhesion-resistant biodegradable region and an opposing tissue-ingrowth biodegradable region. When the prosthesis is implanted into the patient, the adhesion-resistant biodegradable region covers a fascial defect of the hernia, and the tissue-ingrowth biodegradable region is located above the adhesion-resistant biodegradable region while being exposed substantially only to the host's subcutaneous tissue layer. This orientation allows the tissue-ingrowth biodegradable region to become firmly incorporated with the host's body tissue. The adhesion-resistant biodegradable region faces the internal organs and decreases the incidence of adhesions and/or bowel obstruction.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 21, 2010
    Inventors: Christopher J. Calhoun, Lukas Bluecher
  • Publication number: 20100114328
    Abstract: A resorbable thin membrane is applied over a treatment site before a treatment is applied over the resorbable thin membrane to the site. In a particular implementation, a resorbable thin membrane is adhesively applied over a treatment site of tissue before a treatment is conducted onto the tissue whereby the treatment is performed through the resorbable thin membrane. The treatment can be an incision that is made through both the resorbable membrane and into or through the tissue.
    Type: Application
    Filed: July 6, 2009
    Publication date: May 6, 2010
    Inventors: Michael T. Milbocker, Lukas Bluecher
  • Publication number: 20090060978
    Abstract: Resorbable lactide polymer micro-membranes are disclosed. The micro-membranes are constructed of polylactide resorbable polymers, which are engineered to be absorbed into the body relatively slowly over time in order to reduce potential negative side effects. The membranes are formed to have very thin thicknesses, for example, thicknesses between about 0.010 mm and about O.300 mm. The membranes can be extruded from polylactide polymers having a relatively high viscosity property, can be preshaped with relatively thick portions, and can be stored in sterile packages.
    Type: Application
    Filed: August 27, 2008
    Publication date: March 5, 2009
    Inventor: Lukas Bluecher