Patents by Inventor Lukas Frederik Tiemeijer

Lukas Frederik Tiemeijer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11742130
    Abstract: An integrated circuit transformer (150) is formed with a primary winding (91) located in at least a first winding layer having a first thickness, a secondary winding (92) located in at least the first winding layer and having a first center point at the first side of the transformer and two secondary terminals at a second, opposite side of the transformer, and a first center tap feed line (81) located along a symmetry axis of the transformer in an upper metal layer having a second thickness that is at least equivalent to the first thickness of the first winding layer, wherein the first center tap feed line has a direct electrical connection to the first center point in the secondary winding.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: August 29, 2023
    Assignee: NXP B.V.
    Inventors: Lukas Frederik Tiemeijer, Bartholomeus Wilhelmus Christiaan Hovens, Maarten Lont
  • Publication number: 20230198114
    Abstract: A compact planar balun formed on a substrate including a hairpin-shaped conductive microstrip and a single-ended contact. The hairpin-shaped conductive microstrip includes first and second linear segments integrally formed with a U-shaped segment, and a single-ended contact is conductively coupled at a location along the first linear segment. The first and second linear segments each have a first characteristic impedance and are in parallel with each other having a first end forming first and second differential contacts and having a second end. The U-shaped segment has a second characteristic impedance that is less than the first characteristic impedance in order to achieve proper scatter parameter alignment. The U-shaped segment may be generally formed thicker or wider than the linear segments to achieve a reduced characteristic impedance. In the alternative or in addition, co-planer ground metal is formed closer to the U-shaped segment to achieve a reduced characteristic impedance.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Inventors: Lukas Frederik Tiemeijer, Waqas Hassan Syed, Ralf Maria Theodoor Pijper, Harish Nandagopal
  • Publication number: 20220199617
    Abstract: A metal oxide semiconductor, MOS, device (405) is described that includes a gate terminal, at least one source terminal and at least one drain terminal, wherein at least one source terminal and at least one drain terminal are formed of metal and are connected to a number of respective contact vias.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 23, 2022
    Inventors: Jozef Reinerus Maria Bergervoet, Xin Yang, Mark Pieter van der Heijden, Lukas Frederik Tiemeijer, Alessandro Baiano
  • Publication number: 20200402698
    Abstract: An integrated circuit transformer (150) is formed with a primary winding (91) located in at least a first winding layer having a first thickness, a secondary winding (92) located in at least the first winding layer and having a first center point at the first side of the transformer and two secondary terminals at a second, opposite side of the transformer, and a first center tap feed line (81) located along a symmetry axis of the transformer in an upper metal layer having a second thickness that is at least equivalent to the first thickness of the first winding layer, wherein the first center tap feed line has a direct electrical connection to the first center point in the secondary winding.
    Type: Application
    Filed: June 24, 2019
    Publication date: December 24, 2020
    Applicant: NXP B.V.
    Inventors: Lukas Frederik Tiemeijer, Bartholomeus Wilhelmus Christiaan Hovens, Maarten Lont
  • Patent number: 10381447
    Abstract: A Field Effect Transistor (FET) capable of operating at high frequencies and includes comb-shaped source and drain electrodes. The comb-shaped drain electrode includes a plurality of thin comb-shape drain electrode layers at corresponding levels of the FET, each comb-shaped drain electrode layer including a plurality of drain electrode fingers having substantially the same width as the comb-shaped drain electrodes of each other layer. The comb-shaped source electrode includes a plurality of comb-shape source electrode layers at the corresponding levels, each comb-shaped drain electrode layer including a plurality of drain electrode fingers having substantially the same width as the comb-shaped source electrodes of each other layer. In addition, the inter-level retraction of adjacent drain electrode layers is the same or substantially the same. Similarly, the inter-level retraction of adjacent source electrode layers is the same or substantially the same.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: August 13, 2019
    Assignee: NXP B.V.
    Inventors: Lukas Frederik Tiemeijer, Viet Thanh Dinh, Valerie Marthe Girault
  • Publication number: 20190181234
    Abstract: A Field Effect Transistor (FET) capable of operating at high frequencies and includes comb-shaped source and drain electrodes. The comb-shaped drain electrode includes a plurality of thin comb-shape drain electrode layers at corresponding levels of the FET, each comb-shaped drain electrode layer including a plurality of drain electrode fingers having substantially the same width as the comb-shaped drain electrodes of each other layer. The comb-shaped source electrode includes a plurality of comb-shape source electrode layers at the corresponding levels, each comb-shaped drain electrode layer including a plurality of drain electrode fingers having substantially the same width as the comb-shaped source electrodes of each other layer. In addition, the inter-level retraction of adjacent drain electrode layers is the same or substantially the same. Similarly, the inter-level retraction of adjacent source electrode layers is the same or substantially the same.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 13, 2019
    Inventors: Lukas Frederik Tiemeijer, Viet Thanh Dinh, Valerie Marthe Girault
  • Patent number: 9342710
    Abstract: An apparatus, method and package for electronic tamper detection. In one example, an apparatus, device or package for electronic tamper detection includes: a first inductor positioned at a first distance from a first conductive surface; a first oscillator generating a first frequency in dependence upon the first inductor; and a comparator setting a tamper detected status if the generated first frequency is not within an error tolerance to a pre-stored first frequency. One example of a method for fabricating an electronic tamper detection apparatus, device, or package is also provided.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: May 17, 2016
    Assignee: NXP B.V.
    Inventor: Lukas Frederik Tiemeijer
  • Patent number: 9159484
    Abstract: An integrated circuit based transformer, comprising: a primary winding located in a winding layer, the primary winding having two primary terminals at a first side of the transformer; a secondary winding located in a winding layer, the secondary winding having two secondary terminals at a second side of the transformer, the first and second sides located at different sides of the transformer; and a reference bar located in a reference bar layer, the reference bar having a primary reference bar terminal at the first side of the transformer, and having a secondary reference bar terminal at the second side of the transformer. The reference bar is configured to provide a direct electrical connection between the first reference bar terminal and the second reference bar terminal.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: October 13, 2015
    Assignee: NXP, B.V.
    Inventor: Lukas Frederik Tiemeijer
  • Publication number: 20150143551
    Abstract: An apparatus, method and package for electronic tamper detection. In one example, an apparatus, device or package for electronic tamper detection includes: a first inductor positioned at a first distance from a first conductive surface; a first oscillator generating a first frequency in dependence upon the first inductor; and a comparator setting a tamper detected status if the generated first frequency is not within an error tolerance to a pre-stored first frequency. One example of a method for fabricating an electronic tamper detection apparatus, device, or package is also provided.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: NXP B.V.
    Inventor: Lukas Frederik Tiemeijer
  • Patent number: 8981433
    Abstract: A compensation network for a radiofrequency transistor is disclosed. The compensation network comprises first and second bonding bars for coupling to a first terminal of the RF transistor and a compensation capacitor respectively; one or more bond wires coupling the first and second bonding bars together; and a compensation capacitor formed from a first set of conductive elements coupled to the second bonding bar, the first set of conductive elements interdigitating with a second set of conductive elements coupled to a second terminal of the RF transistor.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: March 17, 2015
    Assignee: NXP, B.V.
    Inventors: Lukas Frederik Tiemeijer, Vittorio Cuoco, Rob Mathijs Heeres, Jan Anne van Steenwijk, Marnix Bernard Willemsen, Josephus Henricus Bartholomeus van der Zanden
  • Patent number: 8629495
    Abstract: The invention relates to a field-effect transistor having a higher efficiency than the known field-effect transistors, in particular at higher operating frequencies. This is achieved by electrically connecting sources of a plurality of main current paths by means of a strap line (SL) being inductively coupled to a gate line (Gtl) and/or a drain line (Drnl) for forming an additional RF-return current path parallel to the RF-return current path in a semiconductor body (SB). The invention further relates to a field-effect transistor package, a power amplifier, a multi-stage power amplifier and a base station comprising such a field-effect transistor.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: January 14, 2014
    Assignee: NXP, B.V.
    Inventor: Lukas Frederik Tiemeijer
  • Publication number: 20130321116
    Abstract: An integrated circuit based transformer, comprising: a primary winding located in a winding layer, the primary winding having two primary terminals at a first side of the transformer; a secondary winding located in a winding layer, the secondary winding having two secondary terminals at a second side of the transformer, the first and second sides located at different sides of the transformer; and a reference bar located in a reference bar layer, the reference bar having a primary reference bar terminal at the first side of the transformer, and having a secondary reference bar terminal at the second side of the transformer. The reference bar is configured to provide a direct electrical connection between the first reference bar terminal and the second reference bar terminal.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Inventor: Lukas Frederik Tiemeijer
  • Patent number: 8594604
    Abstract: Capacitive circuits are implemented with desirable quality factors in various implementations. According to an example embodiment, a fringe capacitor includes two capacitive circuits (e.g., plates), respectively having a plurality of capacitive fingers extending from an end structure, and respectively having a connecting pin that is adjacent the connecting pin of the other capacitive circuit, on a common side fringe capacitor. The capacitive fingers are arranged in stacked layers, with vias connecting the fingers in different layers back to the connecting pins.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 26, 2013
    Assignee: NXP, B.V.
    Inventors: Edwin van der Heijden, Lukas Frederik Tiemeijer, Maristella Spella
  • Patent number: 8421577
    Abstract: A planar inductive unit having at least one operating frequency is provided. The inductive unit comprises at least one inductor winding (120) having a first width (121) and a centre (122) and being arranged in a first plane. The inductive unit furthermore comprises at least one ground path (200) having a first section (205) extending in the first plane and at least a second section (210) with a second width (211) extending in at least a second plane.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: April 16, 2013
    Assignee: NXP B.V.
    Inventor: Lukas Frederik Tiemeijer
  • Patent number: 8395472
    Abstract: The present invention provides a means to integrate planar coils on silicon, while providing a high inductance. This high inductance is achieved through a special back- and front sided shielding of a material. In many applications, high-value inductors are a necessity. In particular, this holds for applications in power management. In these applications, the inductors are at least 5 of the order of 1 ?H, and must have an equivalent series resistance of less than 0.1?. For this reason, those inductors are always bulky components, of a typical size of 2×2×1 mm 3, which make a fully integrated solution impossible. On the other hand, integrated inductors, which can monolithically be integrated, do exist. However, these inductors suffer either from low inductance values, or 10 very-high DC resistance values.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: March 12, 2013
    Assignee: NXP B.V.
    Inventors: Freddy Roozeboom, Derk Reefman, Johan Hendrik Klootwijk, Lukas Frederik Tiemeijer, Jaap Ruigrok
  • Patent number: 8217747
    Abstract: A planar inductor (50) comprises a conductive path in the form of a spiral pattern (53A-53D, 54A-54D). A conductive connecting path (62A, 63) connects a terminal (60) to an intermediate tap point (61A). The connecting path comprises at least one path portion which is radially directed with respect to the spiral pattern (53A-53D). The connecting path (62A, 63) can be routed via the inside of the spiral pattern. Where the connecting path comprises only radially-directed path portions, they are commonly joined at the center (64) of the spiral pattern. Multiple path portions (62A, 62B) can each connect to the intermediate tap point of a respective conductive path. The connecting path can use a further conductive track (85) which is parallel to the conductive path which forms the spiral pattern.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: July 10, 2012
    Assignee: NXP B.V.
    Inventor: Lukas Frederik Tiemeijer
  • Patent number: 8203419
    Abstract: An inductor includes a conductive track forming at least three inductor turns. The conductive track has a plurality of track sections. The inductor also includes at least two groups of crossing points, each crossing point comprising a location at which the conductive track crosses over itself. The crossing points of each group collectively reverse the order of at least some of the track sections in the inductor, such that inner track sections of the conductive track cross over to become respective outer track sections, and such that outer track sections of the conductive track cross over to become respective inner track sections.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: June 19, 2012
    Assignee: NXP B.V.
    Inventors: Alexé Levan Nazarian, Lukas Frederik Tiemeijer
  • Publication number: 20120132969
    Abstract: A compensation network for a radiofrequency transistor is disclosed. The compensation network comprises first and second bonding bars for coupling to a first terminal of the RF transistor and a compensation capacitor respectively; one or more bond wires coupling the first and second bonding bars together; and a compensation capacitor formed from a first set of conductive elements coupled to the second bonding bar, the first set of conductive elements interdigitating with a second set of conductive elements coupled to a second terminal of the RF transistor.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 31, 2012
    Applicant: NXP B.V.
    Inventors: Lukas Frederik Tiemeijer, Vittorio Cuoco, Rob Mathijs Heeres, Jan Anne van Steenwijk, Marnix Bernard Willemsen, Josephus Henricus Bartholomeus van der Zanden
  • Publication number: 20120044034
    Abstract: A symmetrical inductor having at least one inductor turn. Each inductor turn has a plurality of separate conductive paths having substantially equal inductance. The inductor also comprises a plurality of crossing points. At each crossing point, some of the conductive paths within a given inductor turn cross over each other to change the order in which they appear within the inductor turn.
    Type: Application
    Filed: August 18, 2011
    Publication date: February 23, 2012
    Applicant: NXP B.V.
    Inventors: Alexé Levan Nazarian, Daniel Stephens, Lukas Frederik Tiemeijer
  • Publication number: 20110151803
    Abstract: Capacitive circuits are implemented with desirable quality factors in various implementations. According to an example embodiment, a fringe capacitor includes two capacitive circuits (e.g., plates), respectively having a plurality of capacitive fingers extending from an end structure, and respectively having a connecting pin that is adjacent the connecting pin of the other capacitive circuit, on a common side fringe capacitor. The capacitive fingers are arranged in stacked layers, with vias connecting the fingers in different layers back to the connecting pins.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Inventors: Edwin van der Heijden, Lukas Frederik Tiemeijer, Maristella Spella