Patents by Inventor Luke Perkins

Luke Perkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9389334
    Abstract: A radiation generator includes an ion source region, and an acceleration column downstream of the extractor electrode and in fluid communication with the ion source region. The ion source region and the acceleration column contain an ionizable gas. A vacuum pump pumps the ionizable gas from the acceleration column to the ion source region such that a gas pressure in the acceleration column is less than a gas pressure in the ion source region.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: July 12, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Luke Perkins
  • Patent number: 9384932
    Abstract: An annular ceramic washer has inner and outer cylindrical surfaces, first and second annular surfaces, and a winding path thick film resistor located on the inner surface. Metal washers are preferably brazed to the end ring surfaces. The annular ceramic washer is useful in vacuum tube applications in establishing a voltage on a target utilizing the voltage of an electrode coupled to the winding path thick film resistor.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: July 5, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Luke Perkins
  • Patent number: 9362078
    Abstract: An ion source for use in a radiation generator tube includes a back passive cathode electrode, a passive anode electrode downstream of the back passive cathode electrode, a magnet adjacent the anode, and a front passive cathode electrode downstream of the passive anode electrode. The front passive cathode electrode and the back passive cathode electrode define an ionization region therebetween. At least one field emitter array (FEA) cathode is configured to electrostatically discharge due to an electric field in the ion source. The back passive cathode electrode and the passive anode electrode, and the front passive cathode electrode and the passive anode electrode, have respective voltage differences therebetween, and the magnet generating a magnetic field, such that a Penning-type trap is produced to confine electrons from the electrostatic discharge to the ionization region. At least some of the electrons in the ionization region interact with an ionizable gas to create ions.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: June 7, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Luke Perkins
  • Publication number: 20160139295
    Abstract: A radiation generator includes an ion source region, and an acceleration column downstream of the extractor electrode and in fluid communication with the ion source region. The ion source region and the acceleration column contain an ionizable gas. A vacuum pump pumps the ionizable gas from the acceleration column to the ion source region such that a gas pressure in the acceleration column is less than a gas pressure in the ion source region.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 19, 2016
    Inventor: Luke Perkins
  • Patent number: 9322262
    Abstract: A method for operating a pulsed neutron generator including an ionizer with an electron emitting cathode and a grid wherein the cathode and grid are disposed in a sealed chamber. At least one of the following is applicable to the ionizer; a distance between the cathode and the grid, a cathode current and/or a potential on the grid are selected such that the ionizer operates at most about one-half the space charge limited current for a grid current selected to provide a predetermined amount of neutron production.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 26, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Leo Chirovsky, Luke Perkins, Jani Reijonen, Loic Vilde
  • Publication number: 20160074037
    Abstract: An implant insertion device is adapted for use with a shape memory implant. The shape memory implant includes a bridge interconnecting first and second legs. The shape memory implant is movable between a first shape in which the first and second legs are substantially non-parallel and a second shape in which the first and second legs are substantially parallel. The implant insertion device engages the shape memory implant to maintain the shape memory implant in its second shape until the delivery of the shape memory implant into tissue or bone.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Applicant: BioMedical Enterprises, Inc.
    Inventors: Daniel F. Cheney, Joseph H. Taber, Luke A. Perkins, Joseph P. Ritz
  • Patent number: 9184019
    Abstract: An ion source for use in a radiation generator includes an active cathode configured to emit electrons on a trajectory away from the active cathode, at least some of the electrons as they travel interacting with an ionizable gas to produce ions. In addition, there is at least one extractor downstream of the active cathode having a potential such that the ions are attracted toward the at least one extractor.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 10, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Luke Perkins, Benjamin Levitt, Peter Wraight, Arthur D. Liberman
  • Patent number: 9129770
    Abstract: An ion source for use in a radiation generator includes a sealed envelope containing an ionizable gas therein. The ion source also includes a RF antenna external to the sealed envelope, the RF antenna to transmit time-varying electromagnetic fields within the sealed envelope for producing ions from the ionizable gas. There is at least one extractor within the sealed envelope having a potential such that the ions are attracted toward the at least one extractor.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 8, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Luke Perkins, Benjamin Levitt, Peter Wraight, Arthur D. Liberman
  • Patent number: 9105436
    Abstract: A method of generating ions in a radiation generator includes emitting electrons from an active cathode and on a trajectory away from the active cathode, at least some of the electrons as they travel interacting with an ionizable gas to produce ions. The method also includes setting a potential of at least one extractor downstream of the active cathode such that the ions are attracted toward the at least one extractor.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 11, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Luke Perkins, Benjamin Levitt, Peter Wraight, Arthur D. Liberman
  • Publication number: 20150168590
    Abstract: A radiation generator includes at least three extractor electrodes, with an ion source upstream of the at least three extractor electrodes to emit ions in a downstream direction toward the at least three extractor electrodes. There is a target downstream of the at least three extractor electrodes. The at least three extractor electrodes have independently selectable potentials so as to allow direction of an ion beam, formed from the ions, by the independently selectable potentials, toward different longitudinal and lateral regions of the target.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 18, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: LUKE PERKINS
  • Publication number: 20150168579
    Abstract: A logging tool is for determining a property of a subsurface formation having a borehole therein and includes a housing to fit within the borehole. An x-ray generator is carried by the housing and includes at least three extractor electrodes, an electron emitter to emit electrons toward the extractor electrodes, and a target downstream of the extractor electrodes. The extractor electrodes have independently selectable potentials so as to allow direction of an electron beam, formed from the electrons emitted by the electron emitter, toward different longitudinal and lateral regions of the target, the target to emit x-rays into the subsurface formation when struck by the electron beam. A radiation detector is carried by the housing to detect incoming radiation resulting from interactions between the x-rays and the subsurface formation. Processing circuitry is coupled to the radiation detector to determine the property of the subsurface formation based upon detected incoming radiation.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 18, 2015
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: LUKE PERKINS
  • Patent number: 8895994
    Abstract: An electronic device may include an elongated dielectric substrate having opposing first and second ends, a plurality of conductive pads longitudinally spaced apart along the elongated dielectric substrate, and a plurality of silicon carbide (SiC) (e.g., PiN) diode dies. Each SiC die may have bottom and top diode terminals and may be mounted on a respective conductive pad with the bottom diode terminal in contact therewith. The electronic device may further include at least one internal wirebond between the corresponding conductive pad of one SiC diode die and the top diode terminal of a next SiC diode die, a first external lead electrically coupled to the top diode terminal of a first SiC die and extending longitudinally outwardly from the first end, and a second external lead electrically coupled to the corresponding contact pad of a last SiC diode die and extending longitudinally outwardly from the second end.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: November 25, 2014
    Assignee: Schlumberger Technology Corporation
    Inventor: Luke Perkins
  • Patent number: 8866068
    Abstract: An ion source for use in a particle accelerator includes at least one cathode. The at least one cathode has an array of nano-sized projections and an array of gates adjacent the array of nano-sized projections. The array of nano-sized projections and the array of gates have a first voltage difference such that an electric field in the cathode causes electrons to be emitted from the array of nano-sized projections and accelerated downstream. There is a ion source electrode downstream of the at least one cathode, and the at least one cathode and the ion source electrode have the same voltage applied such that the electrons enter the space encompassed by the ion source electrode, some of the electrons as they travel within the ion source electrode striking an ionizable gas to create ions.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 21, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Jani Reijonen, Luke Perkins, Harold Pfutzner
  • Publication number: 20140263998
    Abstract: A method of generating ions in a radiation generator includes emitting electrons from an active cathode and on a trajectory away from the active cathode, at least some of the electrons as they travel interacting with an ionizable gas to produce ions. The method also includes setting a potential of at least one extractor downstream of the active cathode such that the ions are attracted toward the at least one extractor.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Luke Perkins, Benjamin Levitt, Peter Wraight, Arthur D. Liberman
  • Publication number: 20140183349
    Abstract: An ion source for use in a radiation generator tube includes a back passive cathode electrode, a passive anode electrode downstream of the back passive cathode electrode, a magnet adjacent the passive anode electrode, and a front passive cathode electrode downstream of the passive anode electrode. The front passive cathode electrode and the back passive cathode electrode define an ionization region therebetween. At least one Spindt cathode is configured to emit electrons into the ionization region. The back passive electrode electrode and the passive anode electrode, and the front passive cathode electrode and the passive anode electrode, have respective voltage differences therebetween, and the magnet generates a magnetic field, such that a Penning-type trap is produced to confine the electrons to the ionization region. At least some of the electrons in the ionization region interact with an ionizable gas to create ions.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Jonna Flores, Luke Perkins
  • Publication number: 20140183348
    Abstract: An ion source for use in a particle accelerator includes at least one cathode. The at least one cathode has an array of nano-sized projections and an array of gates adjacent the array of nano-sized projections. The array of nano-sized projections and the array of gates have a first voltage difference such that an electric field in the cathode causes electrons to be emitted from the array of nano-sized projections and accelerated downstream. There is a ion source electrode downstream of the at least one cathode, and the at least one cathode and the ion source electrode have the same voltage applied such that the electrons enter the space encompassed by the ion source electrode, some of the electrons as they travel within the ion source electrode striking an ionizable gas to create ions.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Jani Reijonen, Luke Perkins, Harold Pfutzner
  • Publication number: 20140184074
    Abstract: An ion source for use in a radiation generator tube includes a back passive cathode electrode, a passive anode electrode downstream of the back passive cathode electrode, a magnet adjacent the anode, and a front passive cathode electrode downstream of the passive anode electrode. The front passive cathode electrode and the back passive cathode electrode define an ionization region therebetween. At least one field emitter array (FEA) cathode is configured to electrostatically discharge due to an electric field in the ion source. The back passive cathode electrode and the passive anode electrode, and the front passive cathode electrode and the passive anode electrode, have respective voltage differences therebetween, and the magnet generating a magnetic field, such that a Penning-type trap is produced to confine electrons from the electrostatic discharge to the ionization region. At least some of the electrons in the ionization region interact with an ionizable gas to create ions.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Luke Perkins
  • Publication number: 20140183376
    Abstract: An ion source for use in a radiation generator tube includes a back passive cathode electrode, a passive anode electrode downstream of the back passive cathode electrode, a magnet adjacent the passive anode electrode, and a front passive cathode electrode downstream of the passive anode electrode. The front passive cathode electrode and the back passive cathode electrode define an ionization region therebetween. At least one ohmically heated cathode is configured to emit electrons into the ionization region. The back passive cathode electrode and the passive anode electrode, and the front passive cathode electrode and the passive anode electrode, have respective voltage differences therebetween, and the magnet generating a magnetic field, such that a Penning-type trap is produced to confine the electrons to the ionization region. At least some of the electrons in the ionization region interact with an ionizable gas to create ions.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Luke Perkins
  • Publication number: 20140086376
    Abstract: A pulsed neutron generator (PNG) includes a sealed tube and a gas reservoir disposed in the sealed tube. The gas reservoir includes dispersed particles of a thermally reversible hydride-adsorptive material therein. The material panicles having adsorbed therein deuterium and/or tritium. A heated cathode disposed in the sealed tube, wherein heat from the cathode transfers indirectly to the gas reservoir. A gas ionizer is disposed in the sealed tube. A target is disposed in the sealed tube. The target including adsorbed deuterium and/or tritium therein. In another aspect, tube is pre-filled with deuterium and/or tritium, the reservoir is omitted, and an ion beam current is controlled by controlling an ionizer grid voltage and/or current.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Inventor: Luke Perkins
  • Publication number: 20140001488
    Abstract: An electronic device may include an elongated dielectric substrate having opposing first and second ends, a plurality of conductive pads longitudinally spaced apart along the elongated dielectric substrate, and a plurality of silicon carbide (SiC) (e.g., PiN) diode dies. Each SiC die may have bottom and top diode terminals and may be mounted on a respective conductive pad with the bottom diode terminal in contact therewith. The electronic device may further include at least one internal wirebond between the corresponding conductive pad of one SiC diode die and the top diode terminal of a next SiC diode die, a first external lead electrically coupled to the top diode terminal of a first SiC die and extending longitudinally outwardly from the first end, and a second external lead electrically coupled to the corresponding contact pad of a last SiC diode die and extending longitudinally outwardly from the second end.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Inventor: Luke Perkins