Patents by Inventor Lun Zhao

Lun Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11673173
    Abstract: A special roller machine for a metal polar plate. A box body is a square with a circular through hole in the middle part. Upper and lower pressing rollers are mounted in the circular through hole; the upper and lower pressing rollers are mounted in grooves formed in the lower sides of upper and lower sector rotating bodies through bearing seats and are connected with upper and lower rotating blocks respectively; the rotating blocks are symmetrically arranged and are connected with upper and lower servo electric cylinders through connecting rod mechanisms respectively, then the pressing rollers are finely adjusted; four identical arch-shaped plates are mounted on the inner surface of the circular through hole for locating the rotating blocks; and main transmission is implemented in such a way that a servo motor drives the lower pressing roller to move through a safety coupling, a reduction gearbox and a cross coupling.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: June 13, 2023
    Assignee: Taiyuan University of Science and Technology
    Inventors: Fuqiang Zhao, Hugang Tian, Qingxue Huang, Lun Zhao, Hongquan Dong, Xiaodong Zhang
  • Publication number: 20220055084
    Abstract: A special roller machine for a metal polar plate. A box body is a square with a circular through hole in the middle part. Upper and lower pressing rollers are mounted in the circular through hole; the upper and lower pressing rollers are mounted in grooves formed in the lower sides of upper and lower sector rotating bodies through bearing seats and are connected with upper and lower rotating blocks respectively; the rotating blocks are symmetrically arranged and are connected with upper and lower servo electric cylinders through connecting rod mechanisms respectively, then the pressing rollers are finely adjusted; four identical arch-shaped plates are mounted on the inner surface of the circular through hole for locating the rotating blocks; and main transmission is implemented in such a way that a servo motor drives the lower pressing roller to move through a safety coupling, a reduction gearbox and a cross coupling.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Fuqiang ZHAO, Hugang TIAN, Qingxue HUANG, Lun ZHAO, Hongquan DONG, Xiaodong ZHANG
  • Publication number: 20190383140
    Abstract: The present invention provides a method and a device for predicting the change in the water cut rising rate of a water-drive oil reservoir. The method comprises: determining the actual water cut rising rates and water cuts of the oil reservoir, plotting the scatter plot of the actual water cut rising rates and water cuts of the oil reservoir; fitting the scatter plot of the actual water cut rising rates and water cuts of the oil reservoir to a relationship between the water cut rising rate and the water cut, to obtain the initial water cut of the oil reservoir, the degree of recovery of crude oil when the water cut of the oil reservoir is the initial water cut, the ultimate recovery of crude oil when the water cut of the oil reservoir is the water cut limit; and determining the law of change in the water cut rising rate with respect to the degree of recovery and the change in the water cut rising rate in the water-drive oil reservoir.
    Type: Application
    Filed: January 23, 2019
    Publication date: December 19, 2019
    Inventors: Libing FU, Jun NI, Xuanran LI, Tao WANG, Lun ZHAO, Zifei FAN
  • Publication number: 20190318642
    Abstract: An online programming education method and system, comprising choosing and acquiring an online course for a piece of knowledge; and completing a programming exercise in relation to the piece of knowledge and, if the completed programming exercise meets a predetermined criterion, proceeding to an online course for another piece of knowledge next to said piece of knowledge. After the user has learnt a piece of knowledge, a programming exercise in relation thereto is provided to ensure that another piece of knowledge next to said piece of knowledge will not be made available unless the completed programming exercise meets a predetermined criterion, i.e., unless the user has mastered the piece of knowledge to some extent. Further, a teacher can use the teacher terminal to answer the user's questions in an online manner, thus enhancing his/her learning efficiency.
    Type: Application
    Filed: October 10, 2017
    Publication date: October 17, 2019
    Applicant: LILE EDUCATION AND TECHNOLOGY (SHANGHAI) CO., LTD.
    Inventor: LUN ZHAO
  • Patent number: 9607989
    Abstract: Methods for forming a trench silicide without gouging the silicon source/drain regions and the resulting devices are disclosed. Embodiments include forming first and second dummy gates, each with spacers at opposite sides thereof, on a substrate; forming eSiGe source/drain regions at opposite sides of the first dummy gate; forming raised source/drain regions at opposite sides of the second dummy gate; forming a silicon cap on each of the eSiGe and raised source/drain regions; forming an ILD over and between the first and second dummy gates; replacing the first and second dummy gates with first and second HKMG, respectively; forming a contact trench through the ILD into the silicon cap over each of the eSiGe and raised source/drain regions; and forming a silicide over the eSiGe and raised source/drain regions.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: March 28, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xusheng Wu, Yue Hu, Xin Wang, Yong Meng Lee, Wen-Pin Peng, Lun Zhao, Wei-Hua Tong
  • Patent number: 9570586
    Abstract: Circuit fabrication methods are provided which include, for example: providing one or more gate structures disposed over a substrate structure, the substrate structure including a first region and a second region; forming a plurality of U-shaped cavities extending into the substrate structure in the first region and the second region thereof, where at least one first cavity of the plurality of U-shaped cavities is disposed adjacent in one gate structure in the first region; and expanding the at least one first cavity further into the substrate structure to at least partially undercut the one gate structure, without expanding at least one second cavity of the plurality of U-shaped cavities, where forming the plurality of U-shaped cavities facilitates fabricating the circuit structure. In one embodiment, the circuit structure includes first and second transistors, having different device architectures, the first transistor having a higher mobility characteristic than the second transistor.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: February 14, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hong Yu, Seong Yeol Mun, Bingwu Liu, Lun Zhao, Richard J. Carter, Manfred Eller
  • Patent number: 9455198
    Abstract: One illustrative method disclosed herein includes, among other things, removing at least one, but not all, of a plurality of first features in a first patterned mask layer so as to define a modified first patterned masking layer, wherein removed first feature(s) correspond to a location where a final isolation structure will be formed, performing an etching process though the modified first patterned masking layer to form an initial isolation trench in the substrate, and performing another etching process through the modified first patterned mask layer to thereby define a plurality of fin-formation trenches in the substrate and to extend a depth of the initial isolation trench so as to define a final isolation trench for the final isolation structure.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: September 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hong Yu, HongLiang Shen, Zhenyu Hu, Lun Zhao, Richard J. Carter, Xusheng Wu
  • Publication number: 20160276345
    Abstract: Method for forming FinFET source/drain regions with reduced field oxide loss and the resulting devices are disclosed. Embodiments include forming silicon fins separated by a field oxide on a silicon substrate; recessing the field oxide to reveal an upper portion of the silicon fins; forming a spacer layer conformally over the upper portion of the fins and over the field oxide; filling spaces between the fins with a material having high selectivity with the spacer layer; recessing the material; removing the spacer layer above an upper surface of the material; removing the material; recessing the upper portion of the fins; and epitaxially growing source/drain regions on the recessed fins.
    Type: Application
    Filed: February 22, 2016
    Publication date: September 22, 2016
    Inventors: Hong YU, Bingwu LIU, Hui ZANG, Lun ZHAO
  • Publication number: 20160163702
    Abstract: Methods for forming a trench silicide without gouging the silicon source/drain regions and the resulting devices are disclosed.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 9, 2016
    Inventors: Xusheng WU, Yue HU, Xin WANG, Yong Meng LEE, Wen-Pin PENG, Lun ZHAO, Wei-Hua TONG
  • Patent number: 9324713
    Abstract: Method for forming FinFET source/drain regions with reduced field oxide loss and the resulting devices are disclosed. Embodiments include forming silicon fins separated by a field oxide on a silicon substrate; recessing the field oxide to reveal an upper portion of the silicon fins; forming a spacer layer conformally over the upper portion of the fins and over the field oxide; filling spaces between the fins with a material having high selectivity with the spacer layer; recessing the material; removing the spacer layer above an upper surface of the material; removing the material; recessing the upper portion of the fins; and epitaxially growing source/drain regions on the recessed fins.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: April 26, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hong Yu, Bingwu Liu, Hui Zang, Lun Zhao
  • Publication number: 20150333067
    Abstract: Devices and methods for forming semiconductor devices with FinFETs are provided. One method includes, for instance: obtaining an intermediate semiconductor device with a substrate and at least one shallow trench isolation region; depositing a hard mask layer over the intermediate semiconductor device; etching the hard mask layer to form at least one fin hard mask; and depositing at least one sacrificial gate structure over the at least one fin hard mask and at least a portion of the substrate. One intermediate semiconductor device includes, for instance: a substrate with at least one shallow trench isolation region; at least one fin hard mask over the substrate; at least one sacrificial gate structure over the at least one fin hard mask; at least one spacer disposed on the at least one sacrificial gate structure; and at least one pFET region and at least one nFET region grown into the substrate.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Jing WAN, Andy WEI, Lun ZHAO, Dae Geun YANG, Jin Ping LIU, Tien-Ying LUO, Guillaume BOUCHE, Mariappan HARIHARAPUTHIRAN, Churamani GAIRE
  • Patent number: 9147696
    Abstract: Devices and methods for forming semiconductor devices with FinFETs are provided. One method includes, for instance: obtaining an intermediate semiconductor device with a substrate and at least one shallow trench isolation region; depositing a hard mask layer over the intermediate semiconductor device; etching the hard mask layer to form at least one fin hard mask; and depositing at least one sacrificial gate structure over the at least one fin hard mask and at least a portion of the substrate. One intermediate semiconductor device includes, for instance: a substrate with at least one shallow trench isolation region; at least one fin hard mask over the substrate; at least one sacrificial gate structure over the at least one fin hard mask; at least one spacer disposed on the at least one sacrificial gate structure; and at least one pFET region and at least one nFET region grown into the substrate.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: September 29, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Jing Wan, Andy Wei, Lun Zhao, Dae Geun Yang, Jin Ping Liu, Tien-Ying Luo, Guillaume Bouche, Mariappan Hariharaputhiran, Churamani Gaire
  • Patent number: 9093561
    Abstract: Circuit fabrication methods are provided which include, for example: providing the circuit structure with at least one gate structure extending over a first region and a second region of a substrate structure, the at least one gate structure including a capping layer; and modifying an etch property of at least a portion of the capping layer of the at least one gate structure, where the modified etch property inhibits etching of the at least one gate structure during a first etch process facilitating fabrication of at least one first transistor in the first region and inhibits etching of the at least one gate structure during a second etch process facilitating fabrication of at least one second transistor in the second region.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: July 28, 2015
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Hong Yu, Huang Liu, Lun Zhao, Richard J. Carter
  • Publication number: 20150140756
    Abstract: Circuit fabrication methods are provided which include, for example: providing one or more gate structures disposed over a substrate structure, the substrate structure including a first region and a second region; forming a plurality of U-shaped cavities extending into the substrate structure in the first region and the second region thereof, where at least one first cavity of the plurality of U-shaped cavities is disposed adjacent in one gate structure in the first region; and expanding the at least one first cavity further into the substrate structure to at least partially undercut the one gate structure, without expanding at least one second cavity of the plurality of U-shaped cavities, where forming the plurality of U-shaped cavities facilitates fabricating the circuit structure. In one embodiment, the circuit structure includes first and second transistors, having different device architectures, the first transistor having a higher mobility characteristic than the second transistor.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 21, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hong YU, Seong Yeol MUN, Bingwu LIU, Lun ZHAO, Richard J. CARTER, Manfred ELLER
  • Publication number: 20150140751
    Abstract: Circuit fabrication methods are provided which include, for example: providing the circuit structure with at least one gate structure extending over a first region and a second region of a substrate structure, the at least one gate structure including a capping layer; and modifying an etch property of at least a portion of the capping layer of the at least one gate structure, where the modified etch property inhibits etching of the at least one gate structure during a first etch process facilitating fabrication of at least one first transistor in the first region and inhibits etching of the at least one gate structure during a second etch process facilitating fabrication of at least one second transistor in the second region.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hong YU, Huang LIU, Lun ZHAO, Richard J. CARTER
  • Publication number: 20150129983
    Abstract: Fin-type transistor fabrication methods and structures are provided having extended embedded stress elements. The methods include, for example: providing a gate structure extending over a fin extending above a substrate; using isotropic etching and anisotropic etching to form an extended cavity within the fin, where the extended cavity in part undercuts the gate structure, and where the using of the isotropic etching and the anisotropic etching deepens the extended cavity into the fin below the undercut gate structure; and forming an embedded stress element at least partially within the extended cavity, including below the gate structure.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: Globalfoundries Inc.
    Inventors: Hong YU, Hyucksoo YANG, Bingwu LIU, Puneet KHANNA, Lun ZHAO
  • Patent number: 9024368
    Abstract: Fin-type transistor fabrication methods and structures are provided having extended embedded stress elements. The methods include, for example: providing a gate structure extending over a fin extending above a substrate; using isotropic etching and anisotropic etching to form an extended cavity within the fin, where the extended cavity in part undercuts the gate structure, and where the using of the isotropic etching and the anisotropic etching deepens the extended cavity into the fin below the undercut gate structure; and forming an embedded stress element at least partially within the extended cavity, including below the gate structure.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: May 5, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hong Yu, Hyucksoo Yang, Bingwu Liu, Puneet Khanna, Lun Zhao
  • Publication number: 20150091094
    Abstract: Devices and methods for forming semiconductor devices with FinFETs are provided. One method includes, for instance: obtaining an intermediate semiconductor device with a substrate and at least one shallow trench isolation region; depositing a hard mask layer over the intermediate semiconductor device; etching the hard mask layer to form at least one fin hard mask; and depositing at least one sacrificial gate structure over the at least one fin hard mask and at least a portion of the substrate. One intermediate semiconductor device includes, for instance: a substrate with at least one shallow trench isolation region; at least one fin hard mask over the substrate; at least one sacrificial gate structure over the at least one fin hard mask; at least one spacer disposed on the at least one sacrificial gate structure; and at least one pFET region and at least one nFET region grown into the substrate.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Jing WAN, Andy WEI, Lun ZHAO, Dae Geun YANG, Jin Ping LIU, Tien-Ying LUO, Guillaume BOUCHE, Mariappan HARIHARAPUTHIRAN, Churamani GAIRE
  • Publication number: 20150017774
    Abstract: Thermal oxidation treatment methods and processes used during fabrication of semiconductor devices are provided. One method includes, for instance: obtaining a device with at least one cavity etched into the device; performing a thermal oxidation treatment to the at least one cavity; and cleaning the at least one cavity. One process includes, for instance: providing a semiconductor device with a substrate, at least one layer over the substrate and at least one fin; forming at least one gate over the fin; doping at least one region below the fin; applying a spacer layer over the device; etching the spacer layer to expose at least a portion of the gate material; etching a cavity into the at least one fin; etching a shaped opening into the cavity; performing thermal oxidation processing on the at least one cavity; and growing at least one epitaxial layer on an interior surface of the cavity.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 15, 2015
    Inventors: Wei Hua TONG, Hong YU, Jin Ping LIU, Hyucksoo YANG, Lun ZHAO, Chandra REDDY
  • Patent number: 8815699
    Abstract: Generally, the present disclosure is directed to methods for forming reverse shallow trench isolation structures with super-steep retrograde wells for use with field effect transistor elements. One illustrative method disclosed herein includes performing a thermal oxidation process to form a layer of thermal oxide material on a semiconductor layer of a semiconductor substrate, and forming a plurality of openings in the layer of thermal oxide material to form a plurality of isolation regions from the layer of thermal oxide material, wherein each of the plurality of openings exposes a respective surface region of the semiconductor layer.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: August 26, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tong Weihua, Krishnan Bharat, Lun Zhao, Kim Seung, Lee Yongmeng, Kim Sun