Patents by Inventor Luu Thanh Nguyen

Luu Thanh Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200035633
    Abstract: A microelectronic device has a pillar connected to an external terminal by an intermetallic joint. Either the pillar or the external terminal, or both, include copper in direct contact with the intermetallic joint. The intermetallic joint includes at least 90 weight percent of at least one copper-tin intermetallic compound. The intermetallic joint is free of voids having a combined volume greater than 10 percent of a volume of the intermetallic joint; and free of a void having a volume greater than 5 percent of the volume of the intermetallic joint. The microelectronic device may be formed using solder which includes at least 93 weight percent tin, 0.5 weight percent to 5.0 weight percent silver, and 0.4 weight percent to 1.0 weight percent copper, to form a solder joint between the pillar and the external terminal, followed by thermal aging to convert the solder joint to the intermetallic joint.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 30, 2020
    Applicant: Texas Instruments Incorporated
    Inventors: Dibyajat Mishra, Ashok Prabhu, Tomoko Noguchi, Luu Thanh Nguyen, Anindya Poddar, Makoto Yoshino, Hau Nguyen
  • Patent number: 10541220
    Abstract: Described examples provide integrated circuits and methods, including forming a conductive seed layer at least partially above a conductive feature of a wafer, forming a conductive structure on at least a portion of the conductive seed layer, performing a printing process that forms a polymer material on a side of the wafer proximate a side of the conductive structure, curing the deposited polymer material, and attaching a solder ball structure to a side of the conductive structure.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 21, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Daiki Komatsu, Makoto Shibuya, Yi Yan, Hau Nguyen, Luu Thanh Nguyen, Anindya Poddar
  • Publication number: 20190199847
    Abstract: A calling user initiates a telephonic communication with a receiving user by dialing a phone number of the receiving user in his or her address book. The communication is transmitted from the calling user's device to the receiving user's device through a network that is not using Internet protocol or Internet-based, e.g., Transmission Control Protocol (TCP), Internet Protocol (IP), TCP-IP, or Voice over Internet Protocol (VoIP). After a number of notifications has passed on the receiving user's device and the receiving user is not able to answer the telephonic communication, a local voicemail recorder will be activated to record and store the telephonic communication for later retrieval by the receiving user. The stored communication is identifier by a sequence of string containing at least one of a name, a telephone number, a storage location, a date-time attribute, and a duration associated with the stored communication.
    Type: Application
    Filed: December 25, 2017
    Publication date: June 27, 2019
    Inventors: Chi Luu Ngoc Nguyen, Chuong Luu Thanh Nguyen
  • Patent number: 7651891
    Abstract: An integrated circuit package includes a carrier, an integrated circuit die attached to the carrier, and a molding compound surrounding the integrated circuit die. The integrated circuit die includes a bottom surface attached to the carrier, a top surface including at least one stress sensitive area, and side surfaces. The molding compound has a top air cavity formed over the at least one stress sensitive area, and a side air cavity formed on the side surfaces of the integrated circuit die. The integrated circuit package may further include a top structural layer surrounding the top air cavity. The air cavities reduce molding-induced stresses in integrated circuit packages.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: January 26, 2010
    Assignee: National Semiconductor Corporation
    Inventor: Luu Thanh Nguyen
  • Patent number: 7431516
    Abstract: Techniques for manufacturing an optical transmission device in a manner so that the photonic device is protected from damage that can be caused by exposure to the environment and physical handling are described. The invention involves placing a lens or a lens array over a photonic device, either with or without the use of a receptacle device, such that the photonic device is contained within a sealed cavity. The invention has three main embodiments in which the photonic device can be hermetically sealed, quasi-hermetically sealed, or non-hermetically sealed. The optical transmission device can be configured to serve as an optical receiver, detector, or a transceiver device.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: October 7, 2008
    Assignee: National Semiconductor Corporation
    Inventors: William Paul Mazotti, Jia Liu, Luu Thanh Nguyen, Haryanto Chandra, Peter Deane, Todd Thyes, Brian Huss, John Rukavina, Glenn Woodhouse
  • Patent number: 7432575
    Abstract: A high performance and small-scale circuitry substrate is described. The circuitry substrate includes a dielectric layer, a return plane attached to a bottom surface of the dielectric layer, and a plurality of return paths (ground) and signal lines that are attached to a top surface of the dielectric layer. The return paths on the top surface are connected to the return plane on the bottom surface by wrapping around at least one edge of the dielectric material. Return paths on the top layer can also separate each pair or adjacent signal lines. The circuitry substrate can be advantageously used to form an optoelectronic module.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: October 7, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Neeraj Anil Pendse, Jia Liu, Jitendra Mohan, Bruce Carlton Roberts, Luu Thanh Nguyen, William Paul Mazotti
  • Patent number: 7269027
    Abstract: Optoelectronic components, specifically, ceramic optical sub-assemblies are described. In one aspect, the optoelectronic component includes a ceramic base substrate having a pair of angled (or substantially perpendicular) faces. The electrical traces are formed directly on the ceramic surfaces and extend between the pair of faces. A semiconductor chip assembly is mounted on the first face of the ceramic base substrate and a photonic device is mounted on the second face. Both the semiconductor chip assembly and the photonic device are electrically connected to traces on the ceramic base substrate. The semiconductor chip assembly is generally arranged to be electrically connected to external devices. The photonic devices are generally arranged to optically communicate with one or more optical fibers. The described structure may be used with a wide variety of photonic devices.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: September 11, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Jia Liu, Luu Thanh Nguyen, Ken Pham, William Paul Mazotti, Bruce Carlton Roberts, Stephen Andrew Gee, John P. Briant
  • Patent number: 7247942
    Abstract: The present invention provides a low cost device that has a true die to external fiber optic connection. Specifically, the present invention relates to an optical device package joined to a semiconductor device package. In some cases, the combination is joined using wirebond studs and an adhesive material. In other cases, the combination is joined using an anisotropic conductive film. Yet, in other cases, the combination is joined using solder material. Each of these joining mechanisms provides high levels of thermal, electrical and optical performance. The joining mechanisms can apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: July 24, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Luu Thanh Nguyen, Ken Pham, Peter Deane, William Paul Mazotti, Bruce Carlton Roberts, Jia Liu
  • Patent number: 7199440
    Abstract: The present invention provides a low cost device that has a true die to external fiber optic connection. Specifically, the present invention relates to an optical device package joined to a semiconductor device package. In some cases, the combination is joined using wirebond studs and an adhesive material. In other cases, the combination is joined using an anisotropic conductive film. Yet, in other cases, the combination is joined using solder material. Each of these joining mechanisms provides high levels of thermal, electrical and optical performance. The joining mechanisms can apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: April 3, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Luu Thanh Nguyen, Ken Pham, Peter Deane, William Paul Mazotti, Bruce Carlton Roberts, Jia Liu
  • Patent number: 7195955
    Abstract: This disclosure describes a clear overmolding cap for protecting the photonic devices in optoelectronic packages from damage due to handling, module assembly, board assembly, and environmental exposure in field applications. The overmolding of the devices with a clear mold cap or similar material also provides a standoff for optical fibers positioned next to the active facets. The photonic devices are attached to a substrate, which may be flexible that has electronic traces that allow the photonic devices to be connected to an external device such as a semiconductor device. A technique for manufacturing the overmolding cap using a mold die system in combination with a rigid carrier is also disclosed. The rigid carrier is used to maintain the shape of the substrate during the molding process. The proposed method applies to photonic devices used in optoelectronic packages that can serve as transceivers, transmitters, or receivers.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: March 27, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Luu Thanh Nguyen, Ken Pham, Peter Deane, William Paul Mazotti, Bruce Carlton Roberts
  • Patent number: 7086788
    Abstract: Concepts for conveniently arranging devices for the transduction of signals to and from voltage and current domains to infrared radiation domains is described. Specifically, optoelectronic components and methods of making the same are described. In one aspect, the optoelectronic component includes a base substrate having a pair of angled (or substantially perpendicular) faces with electrical traces extending therebetween. A semiconductor chip assembly is mounted on the first face of the base substrate and a photonic device is mounted on the second face. Both the semiconductor chip assembly and the photonic device are electrically connected to traces on the base substrate. The semiconductor chip assembly is generally arranged to be electrically connected to external devices. The photonic devices are generally arranged to optically communicate with one or more optical fibers. The described structure may be used with a wide variety of photonic devices.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: August 8, 2006
    Assignee: National Semiconductor Corporation
    Inventors: William Paul Mazotti, Peter Deane, Luu Thanh Nguyen, Ken Pham, Bruce Carlton Roberts, Jia Liu, Yongseon Koh, John P. Briant, Roger William Clarke, Michael R. Nelson, Christopher J. Smith, Janet E. Townsend
  • Patent number: 7073961
    Abstract: Techniques for manufacturing an optical transmission device in a manner so that the photonic device is protected from damage that can be caused by exposure to the environment and physical handling are described. The invention involves placing a lens or a lens array over a photonic device, either with or without the use of a receptacle device, such that the photonic device is contained within a sealed cavity. The invention has three main embodiments in which the photonic device can be hermetically sealed, quasi-hermetically sealed, or non-hermetically sealed. The optical transmission device can be configured to serve as an optical receiver, detector, or a transceiver device.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: July 11, 2006
    Assignee: National Semiconductor Corporation
    Inventors: William Paul Mazotti, Jia Liu, Luu Thanh Nguyen, Haryanto Chandra, Peter Deane, Todd Thyes, Brian Huss, John Rukavina, Glenn Woodhouse
  • Patent number: 7023705
    Abstract: Optoelectronic components, specifically, ceramic optical sub-assemblies are described. In one aspect, the optoelectronic component includes a ceramic base substrate having a pair of angled (or substantially perpendicular) faces. The electrical traces are formed directly on the ceramic surfaces and extend between the pair of faces. A semiconductor chip assembly is mounted on the first face of the ceramic base substrate and a photonic device is mounted on the second face. Both the semiconductor chip assembly and the photonic device are electrically connected to traces on the ceramic base substrate. The semiconductor chip assembly is generally arranged to be electrically connected to external devices. The photonic devices are generally arranged to optically communicate with one or more optical fibers. The described structure may be used with a wide variety of photonic devices.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: April 4, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Jia Liu, Luu Thanh Nguyen, Ken Pham, William Paul Mazotti, Bruce Carlton Roberts, Stephen Andrew Gee, John P. Briant
  • Patent number: 7001083
    Abstract: This disclosure describes a clear overmolding cap for protecting the photonic devices in optoelectronic packages from damage due to handling, module assembly, board assembly, and environmental exposure in field applications. The overmolding of the devices with a clear mold cap or similar material also provides a standoff for optical fibers positioned next to the active facets. The photonic devices are attached to a substrate, which may be flexible that has electronic traces that allow the photonic devices to be connected to an external device such as a semiconductor device. A technique for manufacturing the overmolding cap using a mold die system in combination with a rigid carrier is also disclosed. The rigid carrier is used to maintain the shape of the substrate during the molding process. The proposed method applies to photonic devices used in optoelectronic packages that can serve as transceivers, transmitters, or receivers.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: February 21, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Luu Thanh Nguyen, Ken Pham, Peter Deane, William Paul Mazotti, Bruce Carlton Roberts
  • Patent number: 6973225
    Abstract: The techniques of the present invention are directed towards setting a photonic device into a groove of a substrate, which is then attached to the chip sub-assembly in a way that the resulting optoelectronic package has a low profile and the interconnects between the photonic device and the semiconductor chip are short. The technique involves partially etching a groove in a substrate to allow for positioning of a photonic device within the groove. The photonic device is connected to the chip sub-assembly through interconnects that extend through the thickness of the substrate. The photonic devices are placed on their sides so that the active facets are perpendicular to the main axis of the chip sub-assembly. In this configuration, the optical fibers can be positioned parallel to the CSA top surface, ensuring a low module profile in the process.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: December 6, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Luu Thanh Nguyen, Ken Pham, Peter Deane, William Paul Mazotti, Bruce Carlton Roberts, Hau Thanh Nguyen, John P. Briant, Roger Clarke, Michael R. Nelson, Janet E. Townsend
  • Patent number: 6916121
    Abstract: Concepts for conveniently arranging devices for the transduction of signals to and from voltage and current domains to infrared radiation domains is described. Specifically, optoelectronic components and methods of making the same are described. In one aspect, the optoelectronic component includes a base substrate having a pair of angled (or substantially perpendicular) faces with electrical traces extending therebetween. A semiconductor chip assembly is mounted on the first face of the base substrate and a photonic device is mounted on the second face. Both the semiconductor chip assembly and the photonic device are electrically connected to traces on the base substrate. The semiconductor chip assembly is generally arranged to be electrically connected to external devices. The photonic devices are generally arranged to optically communicate with one or more optical fibers. The described structure may be used with a wide variety of photonic devices.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: July 12, 2005
    Assignee: National Semiconductor Corporation
    Inventors: William Paul Mazotti, Peter Deane, Luu Thanh Nguyen, Ken Pham, Bruce Carlton Roberts, Jia Liu, Yongseon Koh, John P. Briant, Roger William Clarke, Michael R. Nelson, Christopher J. Smith, Janet E. Townsend
  • Publication number: 20050117835
    Abstract: The present invention provides a low cost device that has a true die to external fiber optic connection. Specifically, the present invention relates to an optical device package joined to a semiconductor device package. In some cases, the combination is joined using wirebond studs and an adhesive material. In other cases, the combination is joined using an anisotropic conductive film. Yet, in other cases, the combination is joined using solder material. Each of these joining mechanisms provides high levels of thermal, electrical and optical performance. The joining mechanisms can apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
    Type: Application
    Filed: December 30, 2004
    Publication date: June 2, 2005
    Applicant: National Semiconductor Corporation, A Delaware Corp.
    Inventors: Luu Thanh Nguyen, Ken Pham, Peter Deane, William Paul Mazotti, Bruce Carlton Roberts, Jia Liu
  • Patent number: 6863450
    Abstract: Techniques for manufacturing an optical transmission device in a manner so that the photonic device is protected from damage that can be caused by exposure to the environment and physical handling are described. The invention involves placing a lens or a lens array over a photonic device, either with or without the use of a receptacle device, such that the photonic device is contained within a sealed cavity. The invention has three main embodiments in which the photonic device can be hermetically sealed, quasi-hermetically sealed, or non-hermetically sealed. The optical transmission device can be configured to serve as an optical receiver, detector, or a transceiver device.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: March 8, 2005
    Assignee: National Semiconductor Corporation
    Inventors: William Paul Mazotti, Jia Liu, Luu Thanh Nguyen, Haryanto Chandra, Peter Deane, Todd Thyes, Brian Huss, John Rukavina, Glenn Woodhouse
  • Patent number: 6858468
    Abstract: The present invention provides a technique for manufacturing a low cost device that provides a true die to external fiber optic connection. Specifically, the present invention relates to several techniques for joining an optical device package to a semiconductor device package. The first technique involves using wirebond studs and an adhesive material, the second technique involves the use of an anisotropic conductive film, and the third technique involves the use of solder material. Each of these techniques provides high levels of thermal, electrical and optical performance. The methods apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: February 22, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Luu Thanh Nguyen, Ken Pham, Peter Deane, William Paul Mazotti, Bruce Carlton Roberts, Jia Liu
  • Patent number: 6838317
    Abstract: The present invention provides a technique for manufacturing a low cost device that provides a true die to external fiber optic connection. Specifically, the present invention relates to several techniques for joining an optical device package to a semiconductor device package. The first technique involves using wirebond studs and an adhesive material, the second technique involves the use of an anisotropic conductive film, and the third technique involves the use of solder material. Each of these techniques provides high levels of thermal, electrical and optical performance. The methods apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: January 4, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Luu Thanh Nguyen, Ken Pham, Peter Deane, William Paul Mazotti, Bruce Carlton Roberts, Jia Liu