Patents by Inventor Lynda E. Busse

Lynda E. Busse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170082783
    Abstract: Methods for producing nanostructured, hydrophobic, superhydrophobic, or hydrophilic, transmissive, anti-reflective surfaces are described. The method for providing a hydrophilic surface includes steps of providing a substrate that is transmissive at at least one wavelength in the infrared to ultraviolet range of the electromagnetic spectrum and comprises at least one surface including nanostructures of a size smaller than the at least one wavelength; and functionalizing the at least one surface with hydroxyl groups thereon. A hydrophobic or superhydrophobic surface can be provided by contacting the at least one surface with a hydrophobic fluoropolymer for a time sufficient to apply at least a monolayer of fluorine-containing material to the at least one surface. These methods provide devices having excellent transmittance and anti-reflectance properties and which are resistant to seawater.
    Type: Application
    Filed: June 27, 2016
    Publication date: March 23, 2017
    Inventors: Darryl A. Boyd, Jesse A. Frantz, Shyam S. Bayya, Lynda E. Busse, Jasbinder S. Sanghera, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20170066926
    Abstract: A composite and a coating having engineered reflective properties are described. The composite comprises a matrix and flakes of a multilayer polymer film including one or more bilayers including at least a layer of a first polymer and a layer of a second polymer having a different refractive index than the first polymer. The coating described includes the composite as applied to a surface and has a reflectance of at least 10% for a selected wavelength range and a transmittance of at least 50% at wavelengths outside of the selected wavelength range. Also described are methods for forming the composite and the coating.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 9, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 9558920
    Abstract: A fiber-end surface structuring chamber or system having a main body with multiple ports including a fiber-holder port, a process port that is either a stamp/shim holder port or a plasma etching enabler port, an evacuation port, a gas delivery port, and one or more observation ports, where the fiber-end surface structuring system forms structures directly into the end of the fiber to enhance transmission of light over a wide range of wavelengths and increase the laser damage threshold.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: January 31, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Catalin M. Florea, Ishwar D. Aggarwal, Leslie Brandon Shaw, Lynda E. Busse, Frederic H. Kung
  • Patent number: 8929695
    Abstract: An N port fiber optical switch includes a movable housing having a perimeter and N corners; a plurality N of optical fibers positioned within the housing and inside the perimeter; and a plurality N of actuators, wherein each actuator is positioned on a corresponding corner such that when selectively activated one or more of the actuators urges the movable housing and the plurality of optical fibers to a selected switch position. The switch provides short switching times and high power handling while allowing for a large number of ports and provides the capability of interfacing with and switching between a variable number of ports.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: January 6, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Rafael Gattass, Frederic H. Kung, Leslie Brandon Shaw, Ishwar D. Aggarwal, Jasbinder S. Sanghera, Lynda E Busse
  • Patent number: 8710470
    Abstract: An infrared laser source system that combines laser emitters through an optical waveguide. Each emitter is coupled to a port of the optical waveguide and the waveguided signal is combined to provide a spatially combined laser source with a single common exit aperture. The materials used for waveguiding allow the propagation of wavelengths in the infrared. The system can be used for combining multiple laser emitters to increase the total output power and/or for combination of multiple emitters with different wavelength for increased spectral coverage out of the laser system.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: April 29, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Rafael R. Gattass, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Lynda E Busse
  • Publication number: 20140014858
    Abstract: An infrared laser source system that combines laser emitters through an optical waveguide. Each emitter is coupled to a port of the optical waveguide and the waveguided signal is combined to provide a spatially combined laser source with a single common exit aperture. The materials used for waveguiding allow the propagation of wavelengths in the infrared. The system can be used for combining multiple laser emitters to increase the total output power and/or for combination of multiple emitters with different wavelength for increased spectral coverage out of the laser system.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 16, 2014
    Inventors: Rafael R. Gattass, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Lynda E. Busse
  • Publication number: 20130083402
    Abstract: An optical system having two or more different optical elements with a corresponding interface between the optical elements. At least one of the optical elements has an anti-reflective structure that is transferred to the interface between two optical elements, typically by embossing. Also disclosed is the related method for making the optical system.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 4, 2013
    Inventors: Jasbinder S. Sanghera, Catalin M. Florea, Leslie Brandon Shaw, Lynda E. Busse, Ishwar D. Aggarwal, Steven R. Bowman
  • Publication number: 20110033156
    Abstract: An optical fiber having microstructured terminal end suitable for reducing Fresnel losses. In an exemplary embodiment, the microstructured surface includes a plurality of protrusions, recesses or combinations thereof that effectively and incrementally change the refractive index of the terminal end of the optical fiber such that the refractive index is gradually drawn closer to the refractive index value of the surrounding environmental medium.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 10, 2011
    Inventors: Jasbinder S. Sanghera, Catalin M. Florea, Ishwar D. Aggarwal, Leslie Brandon Shaw, Lynda E. Busse, Frederic H. Kung
  • Patent number: 6195483
    Abstract: A reflective Bragg grating in the interior of an infrared transmitting glass fiber, and a method for fabricating such reflective Bragg grating in the interior of the infrared transmitting glass fiber is disclosed.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: February 27, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: John A. Moon, Lynda E. Busse, Jasbinder S. Sanghera, Iswar D. Aggarwal
  • Patent number: 5778125
    Abstract: An optical fiber termination connector includes an elongated structure with chamber extending therethrough open at both ends, a fiber disposed in the chamber and spaced therefrom, a solid first material disposed in the chamber around the fiber, and an air gap in the chamber around the end of the fiber. The process includes the steps of locating a fiber in a chamber disposed vertically, with the end of the fiber extending beyond the lower portion of chamber; dipping a lower portion of the chamber into a first material in liquid form so that the first material enters the lower portion of the chamber to a level below an exit port located in the lower portion of the chamber; solidifying the first material disposed in and around the chamber and the fiber; above the solid first material; polishing the lower end of the fiber until it is flush with the chamber at the lower thereof; and removing the first material to form an air gap between the fiber and the lower portion of the chamber.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: July 7, 1998
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Lynda E. Busse, Frederic H. Kung, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Patent number: 5211731
    Abstract: A method for producing internally coated glass tube preforms for drawing er optic conductors. The internally coated glass tubes are halogen coated, preferably coated with metal fluorides, so that an optical fiber formed will have a halogen core which conveys light having a wavelength of about 2 to 4 microns, which is in the infrared region, with low attenuation. With one aspect of the method, a carrier gas and a halogenated alkoxide are introduced into a glass tube which has an inner wall and which is surrounded by a resonator for producing a plasma from the halogenated alkoxide in the tube. With another aspect of the method, a blend of a carrier gas, an organometallic compound, and a halogen-containing gas are introduced into a glass tube which has an inner wall and which is surrounded by a resonator for producing a plasma. In both cases, the tube is moved relative to the resonator to form a plasma zone within the tube such that a halide coating is formed on the inner wall of the tube.
    Type: Grant
    Filed: June 27, 1991
    Date of Patent: May 18, 1993
    Assignee: The United States of Americas as represented by the Secretary of the Navy
    Inventors: Lynda E. Busse, Ishwar D. Aggarwal, Kenneth J. Ewing, Barry B. Harbison
  • Patent number: H2045
    Abstract: A method and apparatus for reducing points of zero intensity, i.e. speckle pattern, emerging from a multimode fiber. The apparatus comprises a beam deflector for rotating an input beam in a conical shape around a launch lens for projecting the beam into the fiber. The rotation of the beam further incorporates the use of two tilting mirrors being 90° out of phase to ensure a conical rotation. The conical rotation of the beam deflector ensures that the lens aberrations, which are rotationally symmetric, do not play a factor in beam alignment into the fiber aperture.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: September 3, 2002
    Assignee: United States of America
    Inventors: Lynda E. Busse, Ishwar D. Aggarwal, John A. Moon