Patents by Inventor M. Bret Schneider

M. Bret Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10035027
    Abstract: One embodiment involves modifying neural transmission patterns between neural structures and/or neural regions in a noninvasive manner. In a related exemplary method, sound waves are directed toward a first targeted neural structure and characteristics of the sound waves are controlled at the first target neural structure with respect to characteristics of sound waves at the second target neural structure. In response, neural transmission patterns modified to produce the intended effect (e.g., long-term potentiation and long-term depression of the neural transmission patterns). In a related embodiment, a transducer produces the sound for stimulating the first neural structure and the second neural structure, and an electronically-based control circuit is used to control characteristics of the sound waves as described above to modify the neural transmission patterns between the first and second neural structures.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: July 31, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, M. Bret Schneider
  • Publication number: 20180178042
    Abstract: Radiosurgical techniques and systems treat behavioral disorders (such as depression, Obsessive-Compulsive Disorder (“OCD”), addiction, hyperphagia, and the like) by directing radiation from outside the patient toward a target tissue within the patient's brain, typically without imposing surgical trauma. The target will often be included in a neural circuit associated with the behavioral disorder. A cellularly sub-lethal dose of the radiation may be applied and the radiation can mitigate the behavioral disorder, obesity, or the like, by modulating the level of neural activity within the target and in associated tissues. Hypersensitive and/or hyperactive neuronal tissue may be targeted, with the radiation downwardly modulating hyperactive neuronal activity. By down-regulating the activity of a target that normally exerts negative feedback or a limiting effect on a relevant neural circuit, the activity of the circuit may be increased.
    Type: Application
    Filed: February 23, 2018
    Publication date: June 28, 2018
    Inventors: M. Bret Schneider, John R. Adler, JR.
  • Publication number: 20180154165
    Abstract: Methods of stimulating a target deep brain region using multiple Transcranial Magnetic Stimulation (TMS) electromagnets positioned over a predetermined cortical regions each having a first-order connection to a target deep brain region and applying TMS so that the applied TMS induces spatial summation and thereby modulation of the target deep brain region.
    Type: Application
    Filed: January 18, 2018
    Publication date: June 7, 2018
    Inventor: M. Bret SCHNEIDER
  • Patent number: 9808651
    Abstract: Medical systems, devices, and methods provide improved radiosurgical techniques for treatment of anxiety disorders (such as Post-Traumatic Stress Disorder (PTSD), Generalized Anxiety Disorder (GAD), Panic Disorder, Social Phobia, Specific Phobia, and the like). Radiation can be directed from a radiation source outside the patient toward a target tissue deep within the patient's brain using a stereotactic radiosurgical platform, typically without having to impose the surgical trauma associated with accessing deep brain tissues. The target will often include at least a portion of the amygdala, with exemplary treatments being directed to targets that are limited to a sub-region of the amygdala. Rather than applying sufficient radiation to kill the neural tissue within the target, a cellularly sub-lethal dose of the radiation may be applied.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: November 7, 2017
    Inventors: M. Bret Schneider, John R. Adler, Jr.
  • Publication number: 20170211040
    Abstract: According to one aspect and example, a method for facilitating cellular interactions in biological tissue provides controllable activation of a selected type of stem cell among a plurality of cell types present in the tissue. The method includes various steps including the introduction of a microbial opsin into a region of the tissue that includes a selected type of stem cell, by expressing the microbial opsin in the stem cell. A light source is then introduced near the stem cell, and the light source is used to controllably activate thejight source to direct pulses of illumination from the light source to the selected type of stem cell, for selectively controlling the growth and development of the stem cell in a manner that is independent of the growth and development of the other types of cells.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 27, 2017
    Inventors: Karl Deisseroth, Albrecht Stroh, M. Bret Schneider, Raag D. Airan
  • Publication number: 20170151443
    Abstract: Described herein are shaped coil TMS electromagnets formed by two bent magnetic coil loops joined at a vertex having an angle between the outer coil regions of the coils that is typically less than 120 degrees (e.g., between about 45 and about 70 degrees, 60 degrees, etc.). The vertex region shaped to optimize the magnetic field projected from the TMS electromagnet. For example, the vertex region may be horizontal or vertical. In some variations the vertex region is formed by re-arranging the conductive windings forming the two coils so that they are no longer arranged in the same columnar structure that they are in the other portions of the bent magnetic coil loops. These TMS electromagnets may be well suited for use in deep-brain Transcranial Magnetic Stimulation.
    Type: Application
    Filed: July 5, 2016
    Publication date: June 1, 2017
    Inventors: David J. MISHELEVICH, M. Bret SCHNEIDER
  • Publication number: 20170113058
    Abstract: Methods of stimulating a target deep brain region using multiple Transcranial Magnetic Stimulation (TMS) electromagnets positioned over a predetermined cortical regions each having a first-order connection to a target deep brain region and applying TMS so that the applied TMS induces spatial summation and thereby modulation of the target deep brain region.
    Type: Application
    Filed: May 31, 2016
    Publication date: April 27, 2017
    Inventor: M. Bret SCHNEIDER
  • Publication number: 20170106203
    Abstract: Brain stimulation methods and devices in which at least two separate magnetic pulse sources with interposed space between them are placed over two distinct brain regions. The coils are pulsed at between 1 and 100 milliseconds apart (e.g., between 5 ms and 40 ms), thereby producing neuroplastic effects upon a third brain region that is network-connected to said first and second regions.
    Type: Application
    Filed: June 1, 2015
    Publication date: April 20, 2017
    Inventors: M. Bret SCHNEIDER, Amit ETKIN
  • Publication number: 20170043188
    Abstract: Radiosurgical techniques and systems treat behavioral disorders (such as depression, Obsessive-Compulsive Disorder (“OCD”), addiction, hyperphagia, and the like) by directing radiation from outside the patient toward a target tissue within the patient's brain, typically without imposing surgical trauma. The target will often be included in a neural circuit associated with the behavioral disorder. A cellularly sub-lethal dose of the radiation may be applied and the radiation can mitigate the behavioral disorder, obesity, or the like, by modulating the level of neural activity within the target and in associated tissues. Hypersensitive and/or hyperactive neuronal tissue may be targeted, with the radiation downwardly modulating hyperactive neuronal activity. By down-regulating the activity of a target that normally exerts negative feedback or a limiting effect on a relevant neural circuit, the activity of the circuit may be increased.
    Type: Application
    Filed: August 16, 2016
    Publication date: February 16, 2017
    Inventors: M. Bret Schneider, Doyle John Borchers, III, John R. Adler
  • Patent number: 9492679
    Abstract: Described herein are methods for modulating the susceptibility of one or more target or tissue regions, and particularly one or more brain regions, to a therapeutic agent such as a drug, immune agent, compound, radiation, etc. In particular, the methods and systems described herein may include magnetic stimulation (including transcranial magnetic stimulation) of target or non-target regions to modulate the susceptibility of the one or more target or tissue regions to a therapeutic agent.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: November 15, 2016
    Assignee: Rio Grande Neurosciences, Inc.
    Inventors: M. Bret Schneider, Michael J. Partsch
  • Patent number: 9486639
    Abstract: The present invention provides for Stereotactic Transcranial Magnetic Stimulation (sTMS) at predetermined locations with the brain or spinal cord and incorporates an array of electromagnets arranged in a specified configuration where selected coils in the array are pulsed simultaneously. Activation of foci demonstrated by functional MRI or other imaging techniques can be used to locate the neural region affected. Imaging techniques can also be utilized to determine the location of the designated targets.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 8, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David J. Mishelevich, M. Bret Schneider
  • Publication number: 20160303396
    Abstract: In one example, a system electrically stimulates target cells of a living animal using an elongated structure, a modulation circuit and a light pathway such as provided by an optical fiber arrangement. The elongated structure is for insertion into a narrow passageway in the animal such that an end of the elongated structure is sufficiently near the target cells to deliver stimulation thereto. The modulation circuit is for modulating the target cells while the elongated structure is in the narrow passageway, where the modulation circuit is adapted to deliver viral vectors through the elongated structure for expressing light responsive proteins in the target cells. The light pathway is used for stimulating the target cells by delivering light to the light-responsive proteins in the target cells.
    Type: Application
    Filed: March 20, 2013
    Publication date: October 20, 2016
    Inventors: Karl Deisseroth, Alexander Aravanis, Feng Zhang, M. Bret Schneider, Jaimie M. Henderson
  • Publication number: 20160279267
    Abstract: In one example, a system electrically stimulates target cells of a living animal using an elongated structure, a modulation circuit and a light pathway such as provided by an optical fiber arrangement. The elongated structure is for insertion into a narrow passageway in the animal such that an end of the elongated structure is sufficiently near the target cells to deliver stimulation thereto. The modulation circuit is for modulating the target cells while the elongated structure is in the narrow passageway, where the modulation circuit is adapted to deliver viral vectors through the elongated structure for expressing light responsive proteins in the target cells. The light pathway is used for stimulating the target cells by delivering light to the light-responsive proteins in the target cells.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 29, 2016
    Inventors: Karl Deisseroth, Alexander Aravanis, Feng Zhang, M. Bret Schneider, Jaimie M. Henderson
  • Publication number: 20160258929
    Abstract: A variety of applications, systems, methods and constructs are implemented for use in connection with screening of ion-channel modulators. Consistent with one such system, drug candidates are screened to identify their effects on cell membrane ion channels and pumps. The system includes screening cells having light responsive membrane ion switches, voltage-gated ion switches and fluorescence producing voltage sensors. A chemical delivery device introduces the drug candidates to be screened. An optical delivery device activates the light responsive ion switches. An optical sensor monitors fluorescence produced by the voltage sensors. A processor processes data received from the optical sensor. A memory stores the data received from the optical sensor.
    Type: Application
    Filed: May 12, 2016
    Publication date: September 8, 2016
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru, M. Bret Schneider
  • Patent number: 9381374
    Abstract: Described herein are shaped coil TMS electromagnets formed by two bent magnetic coil loops joined at a vertex having an angle between the outer coil regions of the coils that is typically less than 120 degrees (e.g., between about 45 and about 70 degrees, 60 degrees, etc.). The vertex region shaped to optimize the magnetic field projected from the TMS electromagnet. For example, the vertex region may be horizontal or vertical. In some variations the vertex region is formed by re-arranging the conductive windings forming the two coils so that they are no longer arranged in the same columnar structure that they are in the other portions of the bent magnetic coil loops. These TMS electromagnets may be well suited for use in deep-brain Transcranial Magnetic Stimulation.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: July 5, 2016
    Assignee: Rio Grande Neurosciences, Inc.
    Inventors: David J. Mishelevich, M. Bret Schneider
  • Patent number: 9360472
    Abstract: A variety of applications, systems, methods and constructs are implemented for use in connection with screening of ion-channel modulators. Consistent with one such system, drug candidates are screened to identify their effects on cell membrane ion channels and pumps. The system includes screening cells having light responsive membrane ion switches, voltage-gated ion switches and fluorescence producing voltage sensors. A chemical delivery device introduces the drug candidates to be screened. An optical delivery device activates the light responsive ion switches. An optical sensor monitors fluorescence produced by the voltage sensors. A processor processes data received from the optical sensor. A memory stores the data received from the optical sensor.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: June 7, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Karl Deisseroth, Feng Zhang, Viviana Gradinaru, M. Bret Schneider
  • Patent number: 9352167
    Abstract: Methods of stimulating a target deep brain region using multiple Transcranial Magnetic Stimulation (TMS) electromagnets positioned over a predetermined cortical regions each having a first-order connection to a target deep brain region and applying TMS so that the applied TMS induces spatial summation and thereby modulation of the target deep brain region.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 31, 2016
    Assignees: Rio Grande Neurosciences, Inc., The Board of Trustees of the Leeland Stanford Junior University
    Inventor: M. Bret Schneider
  • Publication number: 20160096032
    Abstract: Methods of stimulating a target deep brain region using multiple Transcranial Magnetic Stimulation (TMS) electromagnets positioned over a predetermined cortical regions each having a first-order connection to a target deep brain region and applying TMS so that the applied TMS induces spatial summation and thereby modulation of the target deep brain region.
    Type: Application
    Filed: June 27, 2011
    Publication date: April 7, 2016
    Inventor: M. Bret Schneider
  • Publication number: 20160067518
    Abstract: Described herein are shaped coil TMS electromagnets formed by two bent magnetic coil loops joined at a vertex having an angle between the outer coil regions of the coils that is typically less than 120 degrees (e.g., between about 45 and about 70 degrees, 60 degrees, etc.). The vertex region shaped to optimize the magnetic field projected from the TMS electromagnet. For example, the vertex region may be horizontal or vertical. In some variations the vertex region is formed by re-arranging the conductive windings forming the two coils so that they are no longer arranged in the same columnar structure that they are in the other portions of the bent magnetic coil loops. These TMS electromagnets may be well suited for use in deep-brain Transcranial Magnetic Stimulation.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 10, 2016
    Inventors: David J. MISHELEVICH, M. Bret SCHNEIDER
  • Publication number: 20160067516
    Abstract: Described herein are methods for neuromodulating brain activity of one or more target brain regions, the methods using Transcranial Magnetic Stimulation (TMS) to produce robust analgesia. In particular, described herein are systems for arranging one or more (e.g., a plurality) of TMS electromagnets in a configuration and applying sufficient energy to neuromodulate the dorsal anterior cingulate gyrus relative to cortical brain regions to significant modulate pain, including the pain of fibromyalgia.
    Type: Application
    Filed: September 11, 2015
    Publication date: March 10, 2016
    Inventors: M. Bret SCHNEIDER, David J. MISHELEVICH, John W. SADLER