Patents by Inventor M. SHANE BOWEN

M. SHANE BOWEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11318462
    Abstract: An example of a flow cell includes a substrate, which includes nano-depressions defined in a surface of the substrate, and interstitial regions separating the nano-depressions. A hydrophobic material layer has a surface that is at least substantially co-planar with the interstitial regions and is positioned to define a hydrophobic barrier around respective sub-sets of the nano-depressions.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: May 3, 2022
    Assignee: Illumina, Inc.
    Inventors: Tarun Kumar Khurana, Arnaud Rival, Lewis J. Kraft, Steven Barnard, M. Shane Bowen, Xi-Jun Chen, Yir-Shyuan Wu, Jeffrey S. Fisher, Dajun Yuan
  • Patent number: 11308640
    Abstract: A method of registering features in a repeating pattern can include (a) providing an object having a repeating pattern of features and a fiducial; (b) obtaining a target image of the object, wherein the target image includes the repeating pattern of features and the fiducial; (c) comparing the fiducial in the target image to reference data, wherein the reference data includes xy coordinates for a virtual fiducial; and (d) determining locations for the features in the target image based on the comparison of the virtual fiducial in the reference data to the fiducial in the data from the target image. The fiducial can have at least concentric circles that produce three different signal levels. The locations of the features can be determined at a variance of less than 5 ?m.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: April 19, 2022
    Assignee: ILLUMINA, INC.
    Inventors: John S. Vieceli, Stephen Tanner, John A. Moon, M. Shane Bowen
  • Publication number: 20220098653
    Abstract: Structured substrate including (a) a plurality of nanoparticles distributed on a solid support, (b) a gel material forming a layer in association with the plurality of nanoparticles, and (c) a library of target nucleic acids in the gel material.
    Type: Application
    Filed: December 10, 2021
    Publication date: March 31, 2022
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Hui Han, Sang Ryul Park
  • Publication number: 20220075263
    Abstract: Provided in one example is a method of manufacturing a flowcell that includes: forming a core layer, the core layer disposed between a substrate and a nanowell layer, the nanowell layer having nanowells to receive a sample, the core layer having a higher refractive index than the substrate and the nanowell layer; and forming a grating to couple light to the core layer.
    Type: Application
    Filed: May 28, 2020
    Publication date: March 10, 2022
    Inventors: Dajun Yuan, M. Shane Bowen, Zhong Mei
  • Patent number: 11262307
    Abstract: Fiducial markers are provided on patterned arrays of the type that may be used for molecular analysis, such as sequencing. The fiducial markers may have configurations that enhance their detection in image or detection data, that facilitate or improve processing, that provide encoding of useful information, and so forth. Examples of the fiducial markers may include features and materials that are provided on or in the support of a patterned array and that return at least a portion of incident light by reflection. The fiducial markers may form gratings or other encoding configurations that assist in image processing, alignment, or other aspects of processing of the patterned array.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: March 1, 2022
    Assignee: Illumina, Inc.
    Inventors: John S. Vieceli, Alex Nemiroski, Paul Belitz, Robert Langlois, M. Shane Bowen, Danny Yuan Chan, Bala Murali K. Venkatesan, Hui Han, Kevan Samiee, Stephen Tanner
  • Patent number: 11254976
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: February 22, 2022
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin L. Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20220048004
    Abstract: An example of a flow cell includes a substrate, a plurality of chambers defined on or in the substrate, and a plurality of depressions defined in the substrate and within a perimeter of each of the plurality of chambers. The depressions are separated by interstitial regions. Primers are attached within each of the plurality of depressions, and a capture site is located within each of the plurality of chambers.
    Type: Application
    Filed: October 31, 2021
    Publication date: February 17, 2022
    Inventors: Lewis J. Kraft, Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Arnaud Rival, Justin Fullerton, M. Shane Bowen, Hui Han, Jeffrey S. Fisher, Yasaman Farshchi, Mathieu Lessard-Viger
  • Patent number: 11249025
    Abstract: Fiducial markers are provided on a patterned array of the type that may be used for molecular analysis, such as sequencing. The fiducial markers may have configurations and layouts that enhance their detection in image or detection data, that facilitate or improve processing, that provide encoding of useful information, and so forth. Examples of the fiducial markers may include non-rectilinear layouts that may provide for more robust location of both the fiducial markers and sites of the patterned array.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: February 15, 2022
    Assignee: Illumina, Inc.
    Inventors: John S. Vieceli, Alex Nemiroski, Paul Belitz, Robert Langlois, M. Shane Bowen, Danny Yuan Chan, Bala Murali K. Venkatesan, Hui Han, Kevan Samiee, Stephen Tanner
  • Publication number: 20220002711
    Abstract: Provided is a method, including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments. Also provided is a method including stretching a polynucleotide over a substrate including a plurality of equally spaced cleavage regions including a plurality of transposases, cleaving the polynucleotide with two or more of the plurality of transposases to form a plurality of polynucleotide fragments, and separating, within the plurality of polynucleotide fragments, a population of longer polynucleotide fragments from a population of shorter polynucleotide fragments.
    Type: Application
    Filed: June 25, 2021
    Publication date: January 6, 2022
    Applicants: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Maria Candelaria Rogert BACIGALUPO, Frank STEEMERS, Jeffrey FISHER, Andrew SLATTER, Lewis KRAFT, Niall GORMLEY, M. Shane BOWEN
  • Publication number: 20210379858
    Abstract: Substrates comprising a functionalizable layer, a polymer layer comprising a plurality of micro-scale or nano-scale patterns, or combinations thereof, and a backing layer and the preparation thereof by using room-temperature UV nano-embossing processes are disclosed. The substrates can be prepared by a roll-to-roll continuous process. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Application
    Filed: August 23, 2021
    Publication date: December 9, 2021
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Steven M. Barnard
  • Patent number: 11192083
    Abstract: An example of a flow cell includes a substrate, a plurality of chambers defined on or in the substrate, and a plurality of depressions defined in the substrate and within a perimeter of each of the plurality of chambers. The depressions are separated by interstitial regions. Primers are attached within each of the plurality of depressions, and a capture site is located within each of the plurality of chambers.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: December 7, 2021
    Assignee: Illumina, Inc.
    Inventors: Lewis J. Kraft, Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Arnaud Rival, Justin Fullerton, M. Shane Bowen, Hui Han, Jeffrey S. Fisher, Yasaman Farshchi, Mathieu Lessard-Viger
  • Patent number: 11173466
    Abstract: An example method includes contacting a substrate coated with a sol-gel material with a stamp that includes a plurality of protruding features. While contacting the coated sol-gel material with the stamp, the example method further includes curing the coated sol-gel material so as to form a patterned sol-gel layer that includes a plurality of wells. The stamp is separated from the patterned sol-gel layer.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 16, 2021
    Assignee: Illumina, Inc.
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Publication number: 20210291135
    Abstract: Provided is an array including a solid support having a surface, the surface having a plurality of wells, the wells containing a gel material, the wells being separated from each other by interstitial regions on the surface, the interstitial regions segregating the gel material in each of the wells from the gel material in other wells of the plurality; and a library of target nucleic acids in the gel material, wherein the gel material in each of the wells comprises a single species of the target nucleic acids of the library. Methods for making and using the array are also provided.
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Inventors: Steven M. Barnard, M. Shane Bowen, Maria Candelaria Rogert Bacigalupo, Wayne N. George, Andrew A. Brown, James Tsay
  • Patent number: 11124829
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: September 21, 2021
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown, Dajun Yuan
  • Patent number: 11110683
    Abstract: Substrates comprising a functionalizable layer, a polymer layer comprising a plurality of micro-scale or nano-scale patterns, or combinations thereof, and a backing layer and the preparation thereof by using room-temperature UV nano-embossing processes are disclosed. The substrates can be prepared by a roll-to-roll continuous process. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: September 7, 2021
    Assignee: ILLUMINA, INC.
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Steven M. Barnard
  • Patent number: 11060135
    Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 13, 2021
    Assignee: Illumina, Inc.
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20210187469
    Abstract: Provided is a nanoparticle including a scaffold, a single template site for bonding a template polynucleotide to the scaffold, and a plurality of accessory sites for bonding accessory oligonucleotides to the scaffold, wherein the scaffold is selected from one or more scaffold DNA molecules and one or more scaffold polypeptides, the single template site for bonding a template polynucleotide to the scaffold is selected from a covalent template bonding site and a noncovalent template bonding site and the plurality of accessory sites for bonding accessory oligonucleotides to the scaffold are selected from covalent accessory oligonucleotide bonding sites and noncovalent accessory oligonucleotide bonding sites. Also provided are methods of using the nanoparticle.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 24, 2021
    Applicants: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED, ILLUMINA SINGAPORE PTE. LTD.
    Inventors: Wayne N. GEORGE, Jonathan Mark BOUTELL, Mathieu LESSARD-VIGER, Saurabh NIRANTAR, Pietro GATTI LAFRANCONI, Seth MCDONALD, Yin Nah TEO, Maria Rogert BACIGALUPO, Sergio PEISAJOVICH, Eric BRUSTAD, Michael HOWARD, Xiangyuan YANG, M. Shane Bowen, Alex NEMIROSKI, Jeffrey BRODIN, Ludovic VINCENT, Lorenzo BERTI, Andrew A. BROWN, Fei SHEN, Lena STORMS, Olivia BENICE
  • Publication number: 20210190675
    Abstract: One example of a flow cell includes a base support and a multi-layer stack positioned over the base support. The multi-layer stack includes a resin layer positioned over the base support; and a hydrophobic layer positioned over the resin layer. A depression is defined in the multi-layer stack through the hydrophobic material and through a portion of the resin.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Inventors: Sahngki Hong, M. Shane Bowen, Lewis J. Kraft
  • Publication number: 20210170400
    Abstract: Imprinted substrates are often used to produce miniaturized devices for use in electrical, optic and biochemical applications. Imprinting techniques, such as nanoimprinting lithography, may leave residues in the surface of substrates that affect bonding and decrease the quality of the produced devices. An imprinted substrate with residue-free region, or regions with a reduced amount of residue for improved bonding quality is introduced. Methods to produce imprinted substrates without residues from the imprinting process are also introduced. Methods include physical exclusion methods, selective etching methods and energy application methods. These methods may produce residue-free regions in the surface of the substrate that can be used to produce higher strength bonding.
    Type: Application
    Filed: February 5, 2021
    Publication date: June 10, 2021
    Inventors: Hui Han, Dajun Yuan, M. Shane Bowen
  • Patent number: 11020739
    Abstract: Imprinted substrates are often used to produce miniaturized devices for use in electrical, optic and biochemical applications. Imprinting techniques, such as nanoimprinting lithography, may leave residues in the surface of substrates that affect bonding and decrease the quality of the produced devices. An imprinted substrate with residue-free region, or regions with a reduced amount of residue for improved bonding quality is introduced. Methods to produce imprinted substrates without residues from the imprinting process are also introduced. Methods include physical exclusion methods, selective etching methods and energy application methods. These methods may produce residue-free regions in the surface of the substrate that can be used to produce higher strength bonding.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: June 1, 2021
    Assignee: Illumina, Inc.
    Inventors: Hui Han, Dajun A. Yuan, M. Shane Bowen