Patents by Inventor M. SHANE BOWEN

M. SHANE BOWEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210139979
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Publication number: 20210139975
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Application
    Filed: December 31, 2020
    Publication date: May 13, 2021
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown, Dajun Yuan
  • Publication number: 20210130814
    Abstract: A structured substrate includes a substrate body having an active side. The substrate body includes reaction cavities that open along the active side and interstitial regions that separate the reaction cavities. The structured substrate includes an ensemble amplifier positioned within each of the reaction cavities. The ensemble amplifier includes a plurality of nanostructures configured to at least one of amplify electromagnetic energy that propagates into the corresponding reaction cavity or amplify electromagnetic energy that is generated within the corresponding reaction cavity.
    Type: Application
    Filed: December 21, 2020
    Publication date: May 6, 2021
    Inventors: M. Shane Bowen, Dajun Yuan
  • Publication number: 20210131940
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Applicant: Illumina, Inc.
    Inventors: Arnaud RIVAL, Ali AGAH, Tracy H. FUNG, Dietrich DEHLINGER, Poorya SABOUNCHI, Tarun KHURANA, Craig M. CIESLA, M. Shane BOWEN
  • Publication number: 20210108258
    Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.
    Type: Application
    Filed: December 7, 2020
    Publication date: April 15, 2021
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Publication number: 20210086174
    Abstract: In an example of the method, a functionalized coating layer is applied in depressions of a patterned flow cell substrate. The depressions are separated by interstitial regions. A primer is grafted to the functionalized coating layer to form a grafted functionalized coating layer in the depressions. A hydrogel is applied on at least the grafted functionalized coating layer.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Hongji Ren, Jonathan Mark Boutell, John A. Moon, M. Shane Bowen, Alex Nemiroski, Gary Mark Skinner, Kenny Chen
  • Publication number: 20210055224
    Abstract: An inspection apparatus is provided that comprises an optical target including a solid host material and a fluorescing material embedded in the solid host material. The solid host material has a predetermined phonon energy HOSTPE. The fluorescing material exhibits a select ground energy level and a target excitation (TE) energy level separated from the ground energy level by a first energy gap corresponding to a fluorescence emission wavelength of interest. The fluorescing material has a next lower lying (NLL) energy level relative to the TE energy level. The NLL energy level is spaced a second energy gap FMEG2 below the TE energy level, wherein a ratio of the FMEG2/HOSTPE is three or more.
    Type: Application
    Filed: November 4, 2020
    Publication date: February 25, 2021
    Inventors: John Gerhardt Earney, Joseph Francis Pinto, M. Shane Bowen, Michael S. Graige, Arthur Pitera, Bala Murali K. Venkatesan, Dajun Yuan
  • Patent number: 10919033
    Abstract: In an example of the method, a functionalized coating layer is applied in depressions of a patterned flow cell substrate. The depressions are separated by interstitial regions. A primer is grafted to the functionalized coating layer to form a grafted functionalized coating layer in the depressions. A hydrogel is applied on at least the grafted functionalized coating layer.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: February 16, 2021
    Assignees: Illumina, Inc., Illumina Cambridge Limited
    Inventors: Hongji Ren, Jonathan Mark Boutell, John A. Moon, M. Shane Bowen, Alex Nemiroski, Gary Mark Skinner, Kenny Chen
  • Patent number: 10921233
    Abstract: Flow cells and corresponding methods are provided. The flow cells may include a support frame with top and back sides, and at least one cavity extending from the top side. The flow cells may include at least one light detection device with an active area disposed within the at least one cavity. The flow cells may include a support material disposed within the at least one cavity between the support frame and the periphery of the at least one light detection device coupling them together. The flow cells may include a lid extending over the at least one light detection device and coupled to the support frame about the periphery of the at least one light detection device. The lid and at least a top surface of the at least one light detection device form a flow channel therebetween.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: February 16, 2021
    Assignee: Illumina, Inc.
    Inventors: Arnaud Rival, Ali Agah, Tracy H. Fung, Dietrich Dehlinger, Poorya Sabounchi, Tarun Khurana, Craig M. Ciesla, M. Shane Bowen
  • Publication number: 20210024991
    Abstract: An example of a flow cell includes a substrate; a first primer set attached to a first region on the substrate, the first primer set including an un-cleavable first primer and a cleavable second primer; and a second primer set attached to a second region on the substrate, the second primer set including a cleavable first primer and an un-cleavable second primer.
    Type: Application
    Filed: June 7, 2019
    Publication date: January 28, 2021
    Inventors: Jeffrey S. Fisher, Brian D. Mather, Maria Candelaria Rogert Bacigalupo, Justin Fullerton, Ludovic Vincent, Lewis J. Kraft, Sahngki Hong, Boyan Boyanov, M. Shane Bowen, Sang Park, Wayne N. George, Andrew A. Brown, Dajun Yuan
  • Patent number: 10900076
    Abstract: Embodiments provided herewith are directed to self-assembled methods of preparing a patterned surface for sequencing applications including, for example, a patterned flow cell or a patterned surface for digital fluidic devices. The methods utilize photolithography to create a patterned surface with a plurality of microscale or nanoscale contours, separated by hydrophobic interstitial regions, without the need of oxygen plasma treatment during the photolithography process. In addition, the methods avoid the use of any chemical or mechanical polishing steps after the deposition of a gel material to the contours.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: January 26, 2021
    Assignee: Illumina, Inc.
    Inventors: Yir-Shyuan Wu, Yan-You Lin, M. Shane Bowen, Cyril Delattre, Fabien Abeille, Tarun Khurana, Arnaud Rival, Poorya Sabounchi, Dajun Yuan, Maria Candelaria Rogert Bacigalupo
  • Patent number: 10900030
    Abstract: A structured substrate (100) including a substrate body (102) having an active side (104). The substrate body (102) includes reaction cavities or sites (106) that open along the active side (104) and interstitial regions (118) that separate the reaction cavities (106). The structured substrate (100) includes an ensemble amplifier (120) positioned within each of the reaction cavities (106). The ensemble amplifier (120) includes a plurality of nanostructures (116), such as dimers, trimers, bowtie nanoantenna, nanorods, nanorings, nanoplugs, configured to at least one of amplify electromagnetic energy (108) that propagates into the corresponding reaction cavity (106) or amplify electromagnetic energy (110), such as emitted fluorescence, that is generated within the corresponding reaction cavity (106). Preferably the nanostructures (116) within the cavities (106) are covered with a organic material such as a gel (122).
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: January 26, 2021
    Assignee: ILLUMINA, INC.
    Inventors: M Shane Bowen, Dajun Yuan
  • Patent number: 10901230
    Abstract: Example super-resolution microscopy systems are described herein that are configured for relatively high throughput. The disclosed microscopy systems can be to generate an array of sub-diffraction activated areas for imaging. The microscopy systems can be to utilize imaging techniques that employ time delay integration to build up super-resolution images over time. The disclosed microscopy systems can utilize long-lived fluorophores in conjunction with wide field and patterned illumination to generate super-resolution images of a sample with relatively high throughput.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: January 26, 2021
    Assignees: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Gary Mark Skinner, Geraint Wyn Evans, Stanley S. Hong, John A. Moon, M. Shane Bowen, Jonathan Mark Boutell, Jason Richard Betley
  • Publication number: 20210010080
    Abstract: Substrates comprising dual functional polymer layered surfaces and the preparation thereof by using UV nano-imprinting processes are disclosed. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 14, 2021
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, M. Shane Bowen
  • Patent number: 10830700
    Abstract: An inspection apparatus is provided that comprises an optical target including a solid host material and a fluorescing material embedded in the solid host material. The solid host material has a predetermined phonon energy HOSTPE. The fluorescing material exhibits a select ground energy level and a target excitation (TE) energy level separated from the ground energy level by a first energy gap corresponding to a fluorescence emission wavelength of interest. The fluorescing material has a next lower lying (NLL) energy level relative to the TE energy level. The NLL energy level is spaced a second energy gap FMEG2 below the TE energy level, wherein a ratio of the FMEG2/HOSTPE is three or more.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: November 10, 2020
    Assignee: ILLUMINA, INC.
    Inventors: John Gerhardt Earney, Joseph Francis Pinto, M. Shane Bowen, Michael S. Graige, Arthur Pitera, Bala Murali K. Venkatesan, Dajun Yuan
  • Patent number: 10808282
    Abstract: Substrates comprising dual functional polymer layered surfaces and the preparation thereof by using UV nano-imprinting processes are disclosed. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: October 20, 2020
    Assignee: ILLUMINA, INC.
    Inventors: Andrew A. Brown, Wayne N. George, Alexandre Richez, M. Shane Bowen
  • Publication number: 20200282693
    Abstract: Substrates comprising a functionalizable layer, a polymer layer comprising a plurality of micro-scale or nano-scale patterns, or combinations thereof, and a backing layer and the preparation thereof by using room-temperature UV nano-embossing processes are disclosed. The substrates can be prepared by a roll-to-roll continuous process. The substrates can be used as flow cells, nanofluidic or microfluidic devices for biological molecules analysis.
    Type: Application
    Filed: May 21, 2020
    Publication date: September 10, 2020
    Inventors: M. Shane Bowen, Bala Murali Venkatesan, Steven M. Barnard
  • Publication number: 20200248252
    Abstract: Fiducial markers are provided on patterned arrays of the type that may be used for molecular analysis, such as sequencing. The fiducials may have configurations that enhance their detection in image or detection data, that facilitate or improve processing, that provide encoding of useful information, and so forth. Examples of the fiducials may include a non-closed shape that may encode information, allow for bubbles to escape during manufacture, and provide additional advantages over closed shape fiducials.
    Type: Application
    Filed: January 31, 2018
    Publication date: August 6, 2020
    Inventors: John S. Vieceli, Alex Nemiroski, Paul Belitz, Robert Langlois, M. Shane Bowen, Danny Yuan Chan, Bala Murali K. Venkatesan, Hui Han, Kevan Samiee, Stephen Tanner
  • Publication number: 20200250851
    Abstract: A method of registering features in a repeating pattern can include (a) providing an object having a repeating pattern of features and a fiducial; (b) obtaining a target image of the object, wherein the target image includes the repeating pattern of features and the fiducial; (c) comparing the fiducial in the target image to reference data, wherein the reference data includes xy coordinates for a virtual fiducial; and (d) determining locations for the features in the target image based on the comparison of the virtual fiducial in the reference data to the fiducial in the data from the target image. The fiducial can have at least concentric circles that produce three different signal levels. The locations of the features can be determined at a variance of less than 5 ?m.
    Type: Application
    Filed: December 6, 2019
    Publication date: August 6, 2020
    Inventors: John S. Vieceli, Stephen Tanner, John A. Moon, M. Shane Bowen
  • Publication number: 20200238247
    Abstract: An example of a flow cell includes a substrate, a plurality of chambers defined on or in the substrate, and a plurality of depressions defined in the substrate and within a perimeter of each of the plurality of chambers. The depressions are separated by interstitial regions. Primers are attached within each of the plurality of depressions, and a capture site is located within each of the plurality of chambers.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 30, 2020
    Inventors: Lewis J. Kraft, Tarun Kumar Khurana, Yir-Shyuan Wu, Xi-Jun Chen, Arnaud Rival, Justin Fullerton, M. Shane Bowen, Hui Han, Jeffrey S. Fisher, Yasaman Farshchi, Mathieu Lessard-Viger