Patents by Inventor Mahender Kumar

Mahender Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10770388
    Abstract: A semiconductor structure includes a substrate having a first region and a second region, a first source/drain disposed on the substrate in the first region, an interlevel dielectric (ILD) disposed on the source/drain, and a first gate disposed on the substrate. The semiconductor structure further includes a first contact trench within the ILD extending to the first source/drain, a first trench contact within the first contact trench, and a first source/drain contact trench extending to the first trench contact. The semiconductor structure further includes a cross couple contact trench within the ILD, and a cross couple contact disposed in the cross couple contact trench in contact with the first gate and the first trench contact. The cross couple contact couples the first source/drain and the first gate.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: September 8, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ruilong Xie, Veeraraghavan S. Basker, Kangguo Cheng, Jia Zeng, Youngtag Woo, Mahender Kumar, Guillaume Bouche
  • Patent number: 10566328
    Abstract: One illustrative integrated circuit product disclosed herein includes a plurality of FinFET transistor devices, a plurality of fins, each of the fins having an upper surface, and an elevated isolation structure having an upper surface that is positioned at a level that is above a level of the upper surface of the fins. In this example, the product also includes a first gate structure having an axial length in a direction corresponding to the gate width direction of the transistor devices, wherein at least a portion of the axial length of the first gate structure is positioned above the upper surface of the elevated isolation structure.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 18, 2020
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Bala Haran, Christopher Sheraw, Mahender Kumar
  • Publication number: 20190385946
    Abstract: A semiconductor structure includes a substrate having a first region and a second region, a first source/drain disposed on the substrate in the first region, an interlevel dielectric (ILD) disposed on the source/drain, and a first gate disposed on the substrate. The semiconductor structure further includes a first contact trench within the ILD extending to the first source/drain, a first trench contact within the first contact trench, and a first source/drain contact trench extending to the first trench contact. The semiconductor structure further includes a cross couple contact trench within the ILD, and a cross couple contact disposed in the cross couple contact trench in contact with the first gate and the first trench contact. The cross couple contact couples the first source/drain and the first gate.
    Type: Application
    Filed: June 15, 2018
    Publication date: December 19, 2019
    Applicant: International Business Machines Corporation
    Inventors: Ruilong Xie, Veeraraghavan S. Basker, Kangguo Cheng, Jia Zeng, Youngtag Woo, Mahender Kumar, Guillaume Bouche
  • Patent number: 10461186
    Abstract: Disclosed are methods wherein vertical field effect transistor(s) (VFET(s)) and isolation region(s) are formed on a substrate. Each VFET includes a fin extending vertically between source/drain regions, a spacer layer and a gate around the fin, and a source/drain sidewall spacer around an upper source/drain region. Optionally, a gate sidewall spacer is adjacent to the gate at a first end of the VFET. An isolation region is adjacent to the gate at a second end and opposing sides of the VFET and extends into the substrate. Contacts are formed including a lower source/drain contact (which is adjacent to the first end of the VFET and is self-aligned if the optional gate sidewall spacer is present) and a self-aligned gate contact (which extends into the isolation region at the second end of the VFET and contacts a side surface of the gate). Also disclosed are structures formed according to the methods.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: October 29, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John H. Zhang, Ruilong Xie, Mahender Kumar
  • Publication number: 20190267371
    Abstract: One illustrative integrated circuit product disclosed herein includes a plurality of FinFET transistor devices, a plurality of fins, each of the fins having an upper surface, and an elevated isolation structure having an upper surface that is positioned at a level that is above a level of the upper surface of the fins. In this example, the product also includes a first gate structure having an axial length in a direction corresponding to the gate width direction of the transistor devices, wherein at least a portion of the axial length of the first gate structure is positioned above the upper surface of the elevated isolation structure.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Inventors: Bala Haran, Christopher Sheraw, Mahender Kumar
  • Publication number: 20190139830
    Abstract: Fin field effect transistors (FinFETs) and their methods of manufacture include a self-aligned gate isolation layer. A method of forming the FinFETs includes the formation of sacrificial spacers over fin sidewalls, and the formation of an isolation layer between adjacent fins at self-aligned locations between the sacrificial spacers. An additional layer such as a sacrificial gate layer is formed over the isolation layer, and photolithography and etching techniques are used to cut, or segment, the additional layer to define a gate cut opening over the isolation layer. The gate cut opening is backfilled with a dielectric material, and the backfilled dielectric and the isolation layer cooperate to separate neighboring sacrificial gates and hence the later-formed functional gates associated with respective devices.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 9, 2019
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Ruilong XIE, Minoli K. PATHIRANE, Chanro PARK, Guillaume BOUCHE, Nigel CAVE, Mahender KUMAR, Min Gyu SUNG, Huang LIU, Hui ZANG
  • Patent number: 9812324
    Abstract: A method includes providing a semiconductor structure having a substrate including a longitudinally extending plurality of fins formed thereon. A target layout pattern is determined, which overlays active areas devices disposed on the fins. The target layout pattern includes a first group of sections overlaying devices having more fins than adjacent devices and a second group of sections overlaying devices having less fins than adjacent devices. A first extended exposure pattern is patterned into the structure, and includes extensions that extend sections of the first group toward adjacent sections of the first group. A second extended exposure pattern is patterned into the structure, and includes extensions that extend sections of the second group toward adjacent sections of the second group. Portions of the first and second extended exposure patterns are combined to form a final pattern overlaying the same active areas as the target pattern.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: November 7, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Lei Zhuang, Lars Liebmann, Stuart A. Sieg, Fee Li Lie, Mahender Kumar, Shreesh Narasimha, Ahmed Hassan, Guillaume Bouche, Xintuo Dai
  • Patent number: 9780002
    Abstract: Methodologies for patterning and implantation are provided Embodiments include forming fins; forming an SiN over the fins; forming an a-Si layer over the SiN; forming and patterning a first patterning layer over the a-Si layer; etching through the a-Si layer using the first patterning layer as a mask; removing the first patterning layer; implanting ions in exposed groups of fins; forming and patterning a second patterning layer to expose a first group of fins and a portion of the a-Si layer on opposite sides of the first group of fins; implanting ions in a first region of the first group of fins; forming a third patterning layer over the first region of the first group of fins and exposing a second region of the first group of fins; and implanting ions in the second region of the first group of fins.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: October 3, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xintuo Dai, Brian Greene, Mahender Kumar, Daniel J. Dechene, Daniel Jaeger
  • Patent number: 8610217
    Abstract: Disclosed are embodiments of a self-protected electrostatic discharge field effect transistor (SPESDFET). In the SPESDFET embodiments, a resistance region is positioned laterally between two discrete sections of a deep source/drain region: a first section that is adjacent to the channel region and a second section that is contacted. The second section of the deep source/drain region is silicided, but the first section adjacent to the channel region and the resistance region are non-silicided. Additionally, the gate structure can be either silicided or non-silicided. With such a configuration, the disclosed SPESDFET provides robust ESD protection without consuming additional area and without altering the basic FET design (e.g., without increasing the distance between the deep source/drain regions and the channel region).
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Mahender Kumar, Junjun Li, Dustin K. Slisher
  • Publication number: 20120146150
    Abstract: Disclosed are embodiments of a self-protected electrostatic discharge field effect transistor (SPESDFET). In the SPESDFET embodiments, a resistance region is positioned laterally between two discrete sections of a deep source/drain region: a first section that is adjacent to the channel region and a second section that is contacted. The second section of the deep source/drain region is silicided, but the first section adjacent to the channel region and the resistance region are non-silicided. Additionally, the gate structure can be either silicided or non-silicided. With such a configuration, the disclosed SPESDFET provides robust ESD protection without consuming additional area and without altering the basic FET design (e.g., without increasing the distance between the deep source/drain regions and the channel region).
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Applicant: International Business Machines Corporation
    Inventors: Robert J. Gauthier, JR., Mahender Kumar, Junjun Li, Dustin K. Slisher
  • Patent number: 8188574
    Abstract: A microelectronic element, e.g., a semiconductor chip having a silicon-on-insulator layer (“SOI layer”) separated from a bulk monocrystalline silicon layer by a buried oxide (BOX) layer in which a crack stop extends in first lateral directions at least generally parallel to the edges of the chip to define a ring-like barrier separating an active portion of the chip inside the barrier with a peripheral portion of the chip. The crack stop can include a first crack stop ring contacting a silicon portion of the chip above the BOX layer; the first crack stop ring may extend continuously in the first lateral directions to surround the active portion of the chip. A guard ring (“GR”) including a GR contact ring can extend downwardly through the SOI layer and the BOX layer to conductively contact the bulk monocrystalline silicon region, the GR contact ring extending at least generally parallel to the first crack stop ring to surround the active portion of the chip.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 29, 2012
    Assignee: International Business Machines Corporation
    Inventors: Matthew S. Angyal, Mahender Kumar, Effendi Leobandung, Jay W. Strane
  • Patent number: 8053838
    Abstract: A semiconductor structure, a fabrication method, and a design structure for a FinFet. The FinFet includes a dielectric layer, a central semiconductor fin region on the dielectric layer, a first semiconductor seed region on the dielectric layer, and a first strain creating fin region. The first semiconductor seed region is sandwiched between the first strain creating fin region and the dielectric layer. The first semiconductor seed region includes a first semiconductor material. The first strain creating fin region includes the first semiconductor material and a second semiconductor material different than the first semiconductor material. A first atom percent of the first semiconductor material in the first semiconductor seed region is different than a second atom percent of the first semiconductor material in the first strain creating fin region.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xiaomeng Chen, Byeong Yeol Kim, Mahender Kumar, Huilong Zhu
  • Patent number: 7943474
    Abstract: A method for forming a memory device is provided by first forming at least one trench in a semiconductor substrate. Next, a lower electrode is formed in the at least one trench, and thereafter a conformal dielectric layer is formed on the lower electrode. An upper electrode is then formed on the conformal dielectric layer. The forming of the upper electrode may include a conformal deposition of metal nitride layer, and a non-conformal deposition of an electrically conductive material atop the metal nitride layer, in which the electrically conductive material encloses the at least one trench.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Keith Kwong Hon Wong, Mahender Kumar
  • Patent number: 7911024
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7790553
    Abstract: Methods for forming high performance gates in MOSFETs and structures thereof are disclosed. One embodiment includes a method including providing a substrate including a first short channel active region, a second short channel active region and a long channel active region, each active region separated from another by a shallow trench isolation (STI); and forming a field effect transistor (FET) with a polysilicon gate over the long channel active region, a first dual metal gate FET having a first work function adjusting material over the first short channel active region and a second dual metal gate FET having a second work function adjusting material over the second short channel active region, wherein the first and second work function adjusting materials are different.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Xiaomeng Chen, Mahender Kumar, Brian J. Greene, Bachir Dirahoui, Jay W. Strane, Gregory G. Freeman
  • Patent number: 7790541
    Abstract: A method for forming multiple self-aligned gate stacks, the method comprising, forming a first group of gate stack layers on a first portion of a substrate, forming a second group of gate stack layers on a second portion of the substrate adjacent to the first portion of the substrate, etching to form a trench disposed between the first portion and the second portion of the substrate, and filling the trench with an insulating material.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: September 7, 2010
    Assignees: International Business Machines Corporation, Advanced Micro Devices, Inc. (AMD)
    Inventors: Bruce B. Doris, Mahender Kumar, Werner A. Rausch, Robin Van Den Nieuwenhuizen
  • Publication number: 20100213571
    Abstract: A method for forming a memory device is provided by first forming at least one trench in a semiconductor substrate. Next, a lower electrode is formed in the at least one trench, and thereafter a conformal dielectric layer is formed on the lower electrode. An upper electrode is then formed on the conformal dielectric layer. The forming of the upper electrode may include a conformal deposition of metal nitride layer, and a non-conformal deposition of an electrically conductive material atop the metal nitride layer, in which the electrically conductive material encloses the at least one trench.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 26, 2010
    Applicant: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Keith Kwong Hon Wong, Mahender Kumar
  • Publication number: 20100207683
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20100200958
    Abstract: A microelectronic element, e.g., a semiconductor chip having a silicon-on-insulator layer (“SOI layer”) separated from a bulk monocrystalline silicon layer by a buried oxide (BOX) layer in which a crack stop extends in first lateral directions at least generally parallel to the edges of the chip to define a ring-like barrier separating an active portion of the chip inside the barrier with a peripheral portion of the chip. The crack stop can include a first crack stop ring contacting a silicon portion of the chip above the BOX layer; the first crack stop ring may extend continuously in the first lateral directions to surround the active portion of the chip. A guard ring (“GR”) including a GR contact ring can extend downwardly through the SOI layer and the BOX layer to conductively contact the bulk monocrystalline silicon region, the GR contact ring extending at least generally parallel to the first crack stop ring to surround the active portion of the chip.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 12, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew S. Angyal, Mahender Kumar, Effendi Leobandung, Jay W. Strane
  • Patent number: 7763518
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt