Patents by Inventor Mahender Kumar

Mahender Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7691716
    Abstract: The present invention provides a “subcollector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped subcollector. Instead, the inventive vertical SOI BJT uses a back gate-induced, majority carrier accumulation layer as the subcollector when it operates. The SOI substrate is biased such that the accumulation layer is formed at the bottom of the first semiconductor layer. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS. A back-gated CMOS device is also provided.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiging Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7659157
    Abstract: A first high-k gate dielectric layer and a first metal gate layer are formed on first and second semiconductor fins. A first metal gate ring is formed on the first semiconductor fin. In one embodiment, the first high-k gate dielectric layer remains on the second semiconductor fin. A second metal gate layer and a silicon containing layer are deposited and patterned to form gate electrodes. In another embodiment, a second high-k dielectric layer replaces the first high-k dielectric layer over the second semiconductor fin, followed by formation of a second metal gate layer. A first electrode comprising a first gate dielectric and a first metal gate is formed on the first semiconductor fin, while a second electrode comprising a second gate dielectric and a second metal gate is formed on the second semiconductor fin. Absence of high-k gate dielectric materials on a gate wiring prevents increase in parasitic resistance.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Mahender Kumar
  • Publication number: 20100006926
    Abstract: Methods for forming high performance gates in MOSFETs and structures thereof are disclosed. One embodiment includes a method including providing a substrate including a first short channel active region, a second short channel active region and a long channel active region, each active region separated from another by a shallow trench isolation (STI); and forming a field effect transistor (FET) with a polysilicon gate over the long channel active region, a first dual metal gate FET having a first work function adjusting material over the first short channel active region and a second dual metal gate FET having a second work function adjusting material over the second short channel active region, wherein the first and second work function adjusting materials are different.
    Type: Application
    Filed: July 10, 2008
    Publication date: January 14, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: HUILONG ZHU, Xiaomeng Chen, Mahender Kumar, Brian J. Greene, Bachir Dirahoui, Jay W. Strane, Gregory G. Freeman
  • Publication number: 20090321828
    Abstract: A semiconductor structure, a fabrication method, and a design structure for a FinFet. The FinFet includes a dielectric layer, a central semiconductor fin region on the dielectric layer, a first semiconductor seed region on the dielectric layer, and a first strain creating fin region. The first semiconductor seed region is sandwiched between the first strain creating fin region and the dielectric layer. The first semiconductor seed region includes a first semiconductor material. The first strain creating fin region includes the first semiconductor material and a second semiconductor material different than the first semiconductor material. A first atom percent of the first semiconductor material in the first semiconductor seed region is different than a second atom percent of the first semiconductor material in the first strain creating fin region.
    Type: Application
    Filed: June 26, 2008
    Publication date: December 31, 2009
    Applicant: International Business Machines Corporation
    Inventors: Xiaomeng Chen, Byeong Yeol Kim, Mahender Kumar, Huilong Zhu
  • Publication number: 20090256207
    Abstract: Disclosed herein is a transistor comprising a first fin having a first gate electrode disposed across the first fin; the gate electrode contacting opposing surfaces of the fin; and a planar oxide layer having a second gate electrode disposed across the planar oxide layer to form a planar metal oxide semiconductor field effect transistor; the first fin and the planar oxide layer being disposed upon a surface of a wafer.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 15, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xiaomeng Chen, Bachir Dirahoui, William K. Henson, Michael D. Hulvey, Amit Kumar, Mahender Kumar, Amanda L. Tessier, Clement H. Wann
  • Publication number: 20090140347
    Abstract: A method for forming multiple self-aligned gate stacks, the method comprising, forming a first group of gate stack layers on a first portion of a substrate, forming a second group of gate stack layers on a second portion of the substrate adjacent to the first portion of the substrate, etching to form a trench disposed between the first portion and the second portion of the substrate, and filling the trench with an insulating material.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 4, 2009
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC. (AMD)
    Inventors: Bruce B. Doris, Mahender Kumar, Werner A. Rausch, Robin Van Den Nieuwenhuizen
  • Patent number: 7528027
    Abstract: An SOI CMOS structure includes a v-shape trench in a pFet region. The v-shape trench has a surface in a (111) plane and extends into an SOI layer in the pFet region. A layer, such as a gate oxide or high-k material, is formed in the v-shape trench. Poly-Si is deposited on top of the layer.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Mahender Kumar, Dan M. Mocuta, Ravikumar Ramachandran, Wenjuan Zhu
  • Publication number: 20090078997
    Abstract: A first high-k gate dielectric layer and a first metal gate layer are formed on first and second semiconductor fins. A first metal gate ring is formed on the first semiconductor fin. In one embodiment, the first high-k gate dielectric layer remains on the second semiconductor fin. A second metal gate layer and a silicon containing layer are deposited and patterned to form gate electrodes. In another embodiment, a second high-k dielectric layer replaces the first high-k dielectric layer over the second semiconductor fin, followed by formation of a second metal gate layer. A first electrode comprising a first gate dielectric and a first metal gate is formed on the first semiconductor fin, while a second electrode comprising a second gate dielectric and a second metal gate is formed on the second semiconductor fin. Absence of high-k gate dielectric materials on a gate wiring prevents increase in parasitic resistance.
    Type: Application
    Filed: September 25, 2007
    Publication date: March 26, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian J. Greene, Mahender Kumar
  • Publication number: 20090072400
    Abstract: Methods of forming a contact in two or more portions and a contact so formed are disclosed. One method includes providing a device including a silicide region; and forming a contact to the silicide region by: first forming a lower contact portion to the silicide region through a first dielectric layer, and second forming an upper contact portion to the lower contact portion through a second dielectric layer over the first dielectric layer. A contact may include a first contact portion contacting a silicide region, the first contact portion having a width less than 100 nm; and a second contact portion coupled to the first contact portion from above, the second contact portion having a width greater than the width of the first contact portion.
    Type: Application
    Filed: September 18, 2007
    Publication date: March 19, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, James J. Heaps-Nelson, Mahender Kumar, Christine Norris, Ravikumar Ramachandran
  • Patent number: 7485510
    Abstract: A semiconductor structure includes a semiconductor layer that includes an inverted V shaped channel region that allows avoidance of a raised source/drain region within the semiconductor structure. In one embodiment, a generally conventional gate electrode is located over a planar surface of the semiconductor layer over the inverted V shaped channel region. In another embodiment, the foregoing generally conventional gate electrode is used in conjunction with an inverted V shaped gate electrode that is located within an inverted V shaped notch that comprises the inverted V shaped channel region.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Ravikumar Ramachandran, Effendi Leobandung, Mahender Kumar, Wenjuan Zhu, Christine Norris
  • Patent number: 7485537
    Abstract: The present invention provides a a method of fabricating bipolar junction transistors (BJTs) on selected areas of a very thin buried oxide (BOX) using a conventional silicon-on-insulator (SOI) starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080261371
    Abstract: The present invention provides a “subcollector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped subcollector. Instead, the inventive vertical SOI BJT uses a back gate-induced, majority carrier accumulation layer as the subcollector when it operates. The SOI substrate is biased such that the accumulation layer is formed at the bottom of the first semiconductor layer. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS. A back-gated CMOS device is also provided.
    Type: Application
    Filed: June 24, 2008
    Publication date: October 23, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiging Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080230869
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: April 8, 2008
    Publication date: September 25, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080169510
    Abstract: In an integrated circuit comprising both PMOSFETs and NMOSFETs, carrier mobility is enhanced on both types of FETs using dual stressed films. The adverse impact of having both layers of stressed films along the boundary between different types of films is eliminated by utilizing self-alignment of the edges of a second stressed film to a preexisting edge of a first stressed film. At the boundary between the two stressed films, one stressed film abuts another but no stressed film overlies another stressed film. By avoiding any overlap of stressed films, the stress exerted on the MOSFET channels is maximized.
    Type: Application
    Filed: January 17, 2007
    Publication date: July 17, 2008
    Applicant: International Business Machines Corporation
    Inventors: Mahender Kumar, Huilong Zhu
  • Patent number: 7394131
    Abstract: Methods for forming or etching silicon trench isolation (STI) in a silicon-on-insulator (SOI) region and a bulk silicon region, and a semiconductor device so formed, are disclosed. The STI can be etched simultaneously in the SOI and bulk silicon regions by etching to an uppermost silicon layer using an STI mask, conducting a timed etch that etches to a desired depth in the bulk silicon region and stops on a buried insulator of the SOI region, and etching through the buried insulator of the SOI region. The buried insulator etch for this process can be done with little complexity as part of a hardmask removal step. Further, by choosing the same depth for both the bulk and SOI regions, problems with a subsequent CMP process are avoided. The invention also cleans up the boundary between the SOI and bulk regions where silicon nitride residuals may exist.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Michael D. Steigerwalt, Mahender Kumar, Herbert L. Ho, David M. Dobuzinsky, Johnathan E. Faltermeier, Denise Pendleton
  • Publication number: 20080132025
    Abstract: The present invention provides a “collector-less” silcon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BIJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Application
    Filed: October 23, 2007
    Publication date: June 5, 2008
    Applicant: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Patent number: 7375410
    Abstract: The present invention provides a “collector-less” silicon-on-insulator (SOI) bipolar junction transistor (BJT) that has no impurity-doped collector. Instead, the inventive vertical SOI BJT uses a back gate-induced, minority carrier inversion layer as the intrinsic collector when it operates. In accordance with the present invention, the SOI substrate is biased such that an inversion layer is formed at the bottom of the base region serving as the collector. The advantage of such a device is its CMOS-like process. Therefore, the integration scheme can be simplified and the manufacturing cost can be significantly reduced. The present invention also provides a method of fabricating BJTs on selected areas of a very thin BOX using a conventional SOI starting wafer with a thick BOX. The reduced BOX thickness underneath the bipolar devices allows for a significantly reduced substrate bias compatible with the CMOS to be applied while maintaining the advantages of a thick BOX underneath the CMOS.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 20, 2008
    Assignee: International Business Machines Corporation
    Inventors: Herbert L. Ho, Mahender Kumar, Qiqing Ouyang, Paul A. Papworth, Christopher D. Sheraw, Michael D. Steigerwalt
  • Publication number: 20080079037
    Abstract: A semiconductor structure includes a semiconductor layer that includes an inverted V shaped channel region that allows avoidance of a raised source/drain region within the semiconductor structure. In one embodiment, a generally conventional gate electrode is located over a planar surface of the semiconductor layer over the inverted V shaped channel region. In another embodiment, the foregoing generally conventional gate electrode is used in conjunction with an inverted V shaped gate electrode that is located within an inverted V shaped notch that comprises the inverted V shaped channel region.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Ravikumar Ramachandran, Effendi Leobandung, Mahender Kumar, Wenjuan Zhu, Christine Norris
  • Publication number: 20070034967
    Abstract: A MOSFET structure and method of forming is described. The method includes forming a metal-containing layer that is thick enough to fully convert the semiconductor gate stack to a semiconductor metal alloy in a first MOSFET type region but only thick enough to partially convert the semiconductor gate stack to a semiconductor metal alloy in a second MOSFET type region. In one embodiment, the gate stack in a first MOSFET region is recessed prior to forming the metal-containing layer so that the height of the first MOSFET semiconductor stack is less than the height of the second MOSFET semiconductor stack. In another embodiment, the metal-containing layer is thinned over one MOSFET region relative to the other MOSFET region prior to the conversion process.
    Type: Application
    Filed: October 2, 2006
    Publication date: February 15, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hasan Nayfeh, Mahender Kumar, Sunfei Fang, Jakub Kedzierski, Cyril Cabral
  • Patent number: 7151023
    Abstract: A MOSFET structure and method of forming is described. The method includes forming a metal-containing layer that is thick enough to fully convert the semiconductor gate stack to a semiconductor metal alloy in a first MOSFET type region but only thick enough to partially convert the semiconductor gate stack to a semiconductor metal alloy in a second MOSFET type region. In one embodiment, the gate stack in a first MOSFET region is recessed prior to forming the metal-containing layer so that the height of the first MOSFET semiconductor stack is less than the height of the second MOSFET semiconductor stack. In another embodiment, the metal-containing layer is thinned over one MOSFET region relative to the other MOSFET region prior to the conversion process.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: December 19, 2006
    Assignee: International Business Machines Corporation
    Inventors: Hasan M. Nayfeh, Mahender Kumar, Sunfei Fang, Jakub T Kedzierski, Cyril Cabral, Jr.