Patents by Inventor Mahesh K. Shah

Mahesh K. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10861764
    Abstract: Microelectronic systems and components having integrated heat dissipation posts are disclosed, as are methods for fabricating such microelectronic systems and components. In various embodiments, the microelectronic system includes a substrate having a frontside, a socket cavity, and inner cavity sidewalls defining the socket cavity. A microelectronic component is seated on the frontside of the substrate such that a heat dissipation post, which projects from the microelectronic component, is received in the socket cavity and separated from the inner cavity sidewalls by a peripheral clearance. The microelectronic system further includes a bond layer contacting the inner cavity sidewalls, contacting an outer peripheral portion of the heat dissipation post, and at least partially filling the peripheral clearance.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 8, 2020
    Assignee: NXP USA, Inc.
    Inventors: Lakshminarayan Viswanathan, Mahesh K. Shah, Lu Li, David Abdo, Geoffrey Tucker, Carl Emil D'Acosta, Jaynal A. Molla, Justin Eugene Poarch, Paul Hart
  • Patent number: 10806021
    Abstract: A packaged microelectronic component includes a substrate and a semiconductor die coupled to a top surface of the substrate. A method of attaching the packaged microelectronic component to a secondary structure entails applying a metal particle-containing material to at least one of a bottom surface of the substrate and a mounting surface of the secondary structure. The packaged microelectronic component and the secondary structure are arranged in a stacked relationship with the metal particle-containing material disposed between the bottom surface and the mounting surface. A low temperature sintering process is performed at a maximum process temperature less than a melt point of the metal particles to transform the metal particle-containing material into a sintered bond layer joining the packaged microelectronic component and the secondary structure. In an embodiment, the substrate may be a heat sink for the packaged microelectronic component and the secondary structure may be a printed circuit board.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: October 13, 2020
    Assignee: NXP USA, Inc.
    Inventors: Lakshminarayan Viswanathan, Lu Li, Mahesh K. Shah, Paul Richard Hart
  • Patent number: 10630243
    Abstract: A system and method for packaging a semiconductor device that includes a wall to reduce electromagnetic coupling is presented. A semiconductor device has a substrate on which a first circuit and a second circuit are formed proximate to each other. An isolation wall of electrically conductive material is located between the first circuit and the second circuit, the isolation wall being configured to reduce inductive coupling between the first and second circuits during an operation of the semiconductor device. Several types of isolation walls are presented.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: April 21, 2020
    Assignee: NXP USA, Inc.
    Inventors: Margaret A. Szymanowski, Sarmad K. Musa, Fernando A. Santos, Mahesh K. Shah
  • Publication number: 20200067460
    Abstract: A system and method for packaging a semiconductor device that includes a wall to reduce electromagnetic coupling is presented. A semiconductor device has a substrate on which a first circuit and a second circuit are formed proximate to each other. An isolation wall of electrically conductive material is located between the first circuit and the second circuit, the isolation wall being configured to reduce inductive coupling between the first and second circuits during an operation of the semiconductor device. Several types of isolation walls are presented.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 27, 2020
    Inventors: Margaret A. Szymanowski, Sarmad K. Musa, Fernando A. Santos, Mahesh K. Shah
  • Patent number: 10476442
    Abstract: A system and method for packaging a semiconductor device that includes a wall to reduce electromagnetic coupling is presented. A semiconductor device has a substrate on which a first circuit and a second circuit are formed proximate to each other. An isolation wall of electrically conductive material is located between the first circuit and the second circuit, the isolation wall being configured to reduce inductive coupling between the first and second circuits during an operation of the semiconductor device. Several types of isolation walls are presented.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: November 12, 2019
    Assignee: NXP USA, Inc.
    Inventors: Margaret A. Szymanowski, Sarmad K. Musa, Fernando A. Santos, Mahesh K. Shah
  • Publication number: 20190342988
    Abstract: A packaged microelectronic component includes a substrate and a semiconductor die coupled to a top surface of the substrate. A method of attaching the packaged microelectronic component to a secondary structure entails applying a metal particle-containing material to at least one of a bottom surface of the substrate and a mounting surface of the secondary structure. The packaged microelectronic component and the secondary structure are arranged in a stacked relationship with the metal particle-containing material disposed between the bottom surface and the mounting surface. A low temperature sintering process is performed at a maximum process temperature less than a melt point of the metal particles to transform the metal particle-containing material into a sintered bond layer joining the packaged microelectronic component and the secondary structure. In an embodiment, the substrate may be a heat sink for the packaged microelectronic component and the secondary structure may be a printed circuit board.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Lakshminarayan Viswanathan, Lu Li, Mahesh K. Shah, Paul Richard Hart
  • Patent number: 10440813
    Abstract: High thermal performance microelectronic modules containing thermal extension levels are provided, as are methods for fabricating such microelectronic modules. In various embodiments, the microelectronic module includes a module substrate having a substrate frontside and a substrate backside. At least one a microelectronic device, such as a semiconductor die bearing radio frequency circuitry, is mounted to the substrate frontside. A substrate-embedded heat spreader, which is thermally coupled to the microelectronic device, is at least partially contained within the module substrate, and extends to the substrate backside. A thermal extension level is located adjacent the substrate backside and extends away from the substrate backside to terminate at a module mount plane. The thermal extension level contains a heat spreader extension, which is bonded to and in thermal communication with the substrate-embedded heat spreader.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: October 8, 2019
    Assignee: NXP USA, Inc.
    Inventors: Lu Li, Elie A. Maalouf, Lakshminarayan Viswanathan, Mahesh K. Shah
  • Patent number: 10405417
    Abstract: A packaged microelectronic component includes a substrate and a semiconductor die coupled to a top surface of the substrate. A method of attaching the packaged microelectronic component to a secondary structure entails applying a metal particle-containing material to at least one of a bottom surface of the substrate and a mounting surface of the secondary structure. The packaged microelectronic component and the secondary structure are arranged in a stacked relationship with the metal particle-containing material disposed between the bottom surface and the mounting surface. A low temperature sintering process is performed at a maximum process temperature less than a melt point of the metal particles to transform the metal particle-containing material into a sintered bond layer joining the packaged microelectronic component and the secondary structure. In an embodiment, the substrate may be a heat sink for the packaged microelectronic component and the secondary structure may be a printed circuit board.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: September 3, 2019
    Assignee: NXP USA, Inc.
    Inventors: Lakshminarayan Viswanathan, Lu Li, Mahesh K. Shah, Paul Richard Hart
  • Publication number: 20190206759
    Abstract: Microelectronic systems and components having integrated heat dissipation posts are disclosed, as are methods for fabricating such microelectronic systems and components. In various embodiments, the microelectronic system includes a substrate having a frontside, a socket cavity, and inner cavity sidewalls defining the socket cavity. A microelectronic component is seated on the frontside of the substrate such that a heat dissipation post, which projects from the microelectronic component, is received in the socket cavity and separated from the inner cavity sidewalls by a peripheral clearance. The microelectronic system further includes a bond layer contacting the inner cavity sidewalls, contacting an outer peripheral portion of the heat dissipation post, and at least partially filling the peripheral clearance.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Lakshminarayan Viswanathan, Mahesh K. Shah, Lu Li, David Abdo, Geoffrey Tucker, Carl Emil D'Acosta, Jaynal A. Molla, Justin Eugene Poarch, Paul Hart
  • Patent number: 10269678
    Abstract: Microelectronic systems having integrated heat dissipation posts are disclosed, as are methods for fabricating such microelectronic systems. In various embodiments, the method includes the step or process of obtaining a microelectronic component from which a heat dissipation post projects. The microelectronic component is placed or seated on a substrate, such as a multilayer printed circuit board, having a socket cavity therein. The heat dissipation post is received in the socket cavity as the microelectronic component is seated on the substrate. Concurrent with or after seating the microelectronic component, the microelectronic component and the heat dissipation post are bonded to the substrate. In certain embodiments, the heat dissipation post may be dimensioned or sized such that, when the microelectronic component is seated on the substrate, the heat dissipation post occupies a volumetric majority of the socket cavity.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: April 23, 2019
    Assignee: NXP USA, Inc.
    Inventors: Lakshminarayan Viswanathan, Mahesh K. Shah, Lu Li, David Abdo, Geoffrey Tucker, Carl Emil D'Acosta, Jaynal A. Molla, Justin Eugene Poarch, Paul Hart
  • Patent number: 10211177
    Abstract: A method and apparatus for incorporation of high power device dies into smaller system packages by embedding metal “coins” having high thermal conductivity into package substrates, or printed circuit boards, and coupling the power device dies onto the metal coins is provided. In one embodiment, the power device die can be attached to an already embedded metal coin in the package substrate or PCB. The power device die can be directly coupled to the embedded metal coin or the power device die can be attached to a metallic interposer which is then bonded to the embedded metal coin. In another embodiment, the die can be attached to the metal coin and then the PCB or package substrate can be assembled to incorporate the copper coin. Active dies are coupled to each other either through wire bonds or other passive components, or using a built-up interconnect.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: February 19, 2019
    Assignee: NXP USA, INC.
    Inventors: Lakshminarayan Viswanathan, Scott M. Hayes, Scott D. Marshall, Mahesh K. Shah
  • Publication number: 20190028063
    Abstract: A system and method for packaging a semiconductor device that includes a wall to reduce electromagnetic coupling is presented. A semiconductor device has a substrate on which a first circuit and a second circuit are formed proximate to each other. An isolation wall of electrically conductive material is located between the first circuit and the second circuit, the isolation wall being configured to reduce inductive coupling between the first and second circuits during an operation of the semiconductor device. Several types of isolation walls are presented.
    Type: Application
    Filed: September 25, 2018
    Publication date: January 24, 2019
    Inventors: Margaret A. Szymanowski, Sarmad K. Musa, Fernando A. Santos, Mahesh K. Shah
  • Publication number: 20180317312
    Abstract: A packaged microelectronic component includes a substrate and a semiconductor die coupled to a top surface of the substrate. A method of attaching the packaged microelectronic component to a secondary structure entails applying a metal particle-containing material to at least one of a bottom surface of the substrate and a mounting surface of the secondary structure. The packaged microelectronic component and the secondary structure are arranged in a stacked relationship with the metal particle-containing material disposed between the bottom surface and the mounting surface. A low temperature sintering process is performed at a maximum process temperature less than a melt point of the metal particles to transform the metal particle-containing material into a sintered bond layer joining the packaged microelectronic component and the secondary structure. In an embodiment, the substrate may be a heat sink for the packaged microelectronic component and the secondary structure may be a printed circuit board.
    Type: Application
    Filed: May 1, 2017
    Publication date: November 1, 2018
    Inventors: Lakshminarayan Viswanathan, Lu Li, Mahesh K. Shah, Paul Richard Hart
  • Patent number: 10110170
    Abstract: A system and method for packaging a semiconductor device that includes a wall to reduce electromagnetic coupling is presented. A semiconductor device has a substrate on which a first circuit and a second circuit are formed proximate to each other. An isolation wall of electrically conductive material is located between the first circuit and the second circuit, the isolation wall being configured to reduce inductive coupling between the first and second circuits during an operation of the semiconductor device. Several types of isolation walls are presented.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: October 23, 2018
    Assignee: NXP USA, INC.
    Inventors: Margaret A. Szymanowski, Sarmad K. Musa, Fernando A. Santos, Mahesh K. Shah
  • Patent number: 9800208
    Abstract: An embodiment of a radio-frequency (RF) device includes at least one transistor, a package, and a surface-mountable capacitor. The package contains the at least one transistor and includes at least one termination. The surface-mountable capacitor is coupled in a shunt configuration between the at least one transistor and a power supply terminal of the device to decouple the at least one transistor from a power supply.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 24, 2017
    Assignee: NXP USA, INC.
    Inventors: Mahesh K. Shah, Jerry L. White, Li Li, Hussain H. Ladhani, Audel A. Sanchez, Lakshminarayan Viswanathan, Fernando A. Santos
  • Publication number: 20170271292
    Abstract: A method and apparatus for incorporation of high power device dies into smaller system packages by embedding metal “coins” having high thermal conductivity into package substrates, or printed circuit boards, and coupling the power device dies onto the metal coins is provided. In one embodiment, the power device die can be attached to an already embedded metal coin in the package substrate or PCB. The power device die can be directly coupled to the embedded metal coin or the power device die can be attached to a metallic interposer which is then bonded to the embedded metal coin. In another embodiment, the die can be attached to the metal coin and then the PCB or package substrate can be assembled to incorporate the copper coin. Active dies are coupled to each other either through wire bonds or other passive components, or using a built-up interconnect.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Lakshminarayan Viswanathan, Scott M. Hayes, Scott D. Marshall, Mahesh K. Shah
  • Patent number: 9673162
    Abstract: A method and apparatus for incorporation of high power device dies into smaller system packages by embedding metal “coins” having high thermal conductivity into package substrates, or printed circuit boards, and coupling the power device dies onto the metal coins is provided. In one embodiment, the power device die can be attached to an already embedded metal coin in the package substrate or PCB. The power device die can be directly coupled to the embedded metal coin or the power device die can be attached to a metallic interposer which is then bonded to the embedded metal coin. In another embodiment, the die can be attached to the metal coin and then the PCB or package substrate can be assembled to incorporate the copper coin. Active dies are coupled to each other either through wire bonds or other passive components, or using a built-up interconnect.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: June 6, 2017
    Assignee: NXP USA, INC.
    Inventors: Lakshminarayan Viswanathan, Scott M. Hayes, Scott D. Marshall, Mahesh K. Shah
  • Publication number: 20170005621
    Abstract: A system and method for packaging a semiconductor device that includes a wall to reduce electromagnetic coupling is presented. A semiconductor device has a substrate on which a first circuit and a second circuit are formed proximate to each other. An isolation wall of electrically conductive material is located between the first circuit and the second circuit, the isolation wall being configured to reduce inductive coupling between the first and second circuits during an operation of the semiconductor device. Several types of isolation walls are presented.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Margaret A. Szymanowski, Sarmad K. Musa, Fernando A. Santos, Mahesh K. Shah
  • Patent number: 9538659
    Abstract: An embodiment of a solder wettable flange includes a flange body formed from a conductive material. The flange body has a bottom surface, a top surface, sidewalls extending between the top surface and the bottom surface, and one or more depressions extending into the flange body from the bottom surface. Each depression is defined by a depression surface that may or may not be solder wettable. During solder attachment of the flange to a substrate, the depressions may function as reservoirs for excess solder. Embodiments also include devices and systems that include such solder wettable flanges, and methods for forming the solder wettable flanges, devices, and systems.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: January 3, 2017
    Assignee: NXP USA, INC.
    Inventors: Lakshminarayan Viswanathan, Jaynal A. Molla, Mahesh K. Shah
  • Patent number: 9484222
    Abstract: A semiconductor device, related package, and method of manufacturing same are disclosed. In at least one embodiment, the semiconductor device includes a radio frequency (RF) power amplifier transistor having a first port, a second port, and a third port. The semiconductor device also includes an output lead, a first output impedance matching circuit between the second port and the output lead, and a first additional circuit coupled between the output lead and a ground terminal. At least one component of the first additional circuit is formed at least in part by way of one or more of a plurality of castellations and a plurality of vias.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: November 1, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Hussain H. Ladhani, Lu Li, Mahesh K. Shah, Lakshminarayan Viswanathan, Michael E. Watts