Patents by Inventor Maik Brett
Maik Brett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12050284Abstract: A vehicle radar system, apparatus and method use a radar control processing unit to generate a target response signal in at least a first dimension from compressed radar data signals and to perform cell-averaging constant false alarm rate (CA-CFAR) target detection by convolving the target response signal with a weighted kernel window signal in a frequency domain using a Fast Fourier Transform hardware accelerator, an element-wise multiplier, and an Inverse Fast Fourier Transform hardware accelerator to generate an output signal having a sign that indicates a target detection decision.Type: GrantFiled: April 1, 2022Date of Patent: July 30, 2024Assignee: NXP B.V.Inventors: Ryan Haoyun Wu, Satish Ravindran, Maik Brett
-
Patent number: 12032088Abstract: A device for a radar sensor is disclosed, the device comprising: transmission circuitry configured to generate transmission signals with a linear frequency chirp modulation in a predetermined frequency band for output to a radar antenna; reception circuitry configured to receive reflection signals corresponding to reflection of the transmitted radar signals from one or more physical objects; and control circuitry configured to select a frequency range within said predetermined frequency band and/or a timing pattern for said transmission signals; wherein said device is configured to: receive a further signal from a further radar sensor; determine, from said further signal, a frequency range and/or timing pattern in use by said further radar sensor for transmission of further transmission signals; and select a frequency range within said predetermined frequency band and/or a timing pattern for said transmission signals which does not conflict with the frequency range and/or timing pattern of said further transmType: GrantFiled: May 20, 2020Date of Patent: July 9, 2024Assignee: NXP USA, Inc.Inventors: Maik Brett, Ryan Haoyun Wu, Arunesh Roy
-
Patent number: 11994611Abstract: A radar system, apparatus, architecture, and method are provided with a transmitter that produces a plurality of distinct FanTOM signals that are transmitted as N RF-encoded transmit signals in an overlapped fashion such that the pulse repetition interval and frame length are kept short; a receiver that processes target return signals reflected from the N RF-encoded transmit signals with a mixer to produce an IF signal which is filtered with one or more notch filters clocked with a sampling clock frequency to control harmonic notch frequencies to suppress transmitter spill-over and close-in self-clutter interference, thereby producing a filtered IF signal that is converted to a digital signal with an analog-to-digital converter that is clocked with the sampling clock frequency; and a radar processor that processes the digital signal to generate a range spectrum comprising N segments that correspond, respectively, to the N RF-encoded transmit signals.Type: GrantFiled: October 1, 2021Date of Patent: May 28, 2024Assignee: NXP B.V.Inventors: Douglas Alan Garrity, Ryan Haoyun Wu, Maik Brett
-
Patent number: 11927664Abstract: In one example, a radar circuit uses computer processing circuitry for processing data corresponding to reflection signals via a sparse array. Output data indicative of signal magnitude associated with the reflection signals is generated, and then angle-of-arrival information is discerned therefrom by (e.g., iteratively): correlating the output data with at least one spatial frequency support vector indicative of a correlation peak for the output data; generating upper-side and lower-side support vectors which are neighbors along the spatial frequency spectrum for said at least one spatial frequency support vector, and providing, via a correlation of the upper-side and lower-side support vectors and said at least one spatial frequency support vector, at least one new vector that is more refined along the spatial frequency spectrum for said at least one spatial frequency support vector.Type: GrantFiled: February 25, 2021Date of Patent: March 12, 2024Assignee: NXP B.V.Inventors: Ryan Haoyun Wu, Jun Li, Maik Brett, Michael Andreas Staudenmaier
-
Patent number: 11906651Abstract: Exemplary aspects are directed to a radar-based detection circuit or system with signal reception circuitry to receive reflection signals in response to radar signals transmitted towards objects. The system may include logic/computer circuitry and a multi-input multi-output (MIMO) virtual array to enhance resolution or remove ambiguities otherwise present in processed reflection signals. The MIMO array may include sparse linear arrays, each being associated with a unique antenna-element spacing from among a set of unique co-prime antenna-element spacings.Type: GrantFiled: February 25, 2021Date of Patent: February 20, 2024Assignee: NXP B.V.Inventors: Ryan Haoyun Wu, Jun Li, Maik Brett, Michael Andreas Staudenmaier
-
Publication number: 20230418897Abstract: Performing a Fast Fourier Transformation (FFT) with increased resolution by applying an adaptive left shift to signed binary integers of an input of a radix kernel and adaptive right shift to signed binary integers of an output of a butterfly of the radix kernel which is based on a leading bit count of the input. The adaptive left shift increases a resolution of the radix kernel computation and the adaptive right shift determines a number of bits of the increased resolution preserved in an output of the radix kernel.Type: ApplicationFiled: August 16, 2022Publication date: December 28, 2023Inventors: Christian Tuschen, Maik Brett, Prabhjot Singh, Anshul Goel, Pranshu Agrawal
-
Patent number: 11815620Abstract: A digitally modulated radar, DMR, transmitter module is disclosed comprising: a sequence generator, configured to generate a repeating digital sequence signal based on a relatively low-frequency clock signal; a mixer configured to combine the digital sequence signal with at least one phase-delayed copy of the digital sequence signal, to provide a combined signal; and a modulator configured to modulate a relatively high-frequency carrier signal, in dependence on the combined signal, to provide a modulated signal. Corresponding systems and methods are also disclosed.Type: GrantFiled: October 29, 2020Date of Patent: November 14, 2023Assignee: NXP USA, INC.Inventors: Gustavo Guarin Aristizabal, Ralf Reuter, Maik Brett
-
Patent number: 11796632Abstract: A radar system utilizing a linear chirp that can achieve a larger MIMO virtual array than traditional systems is provided. Transmit channels transmit distinct chirp signals in an overlapped fashion such that the pulse repetition interval is kept short and the frame is kept short. This alleviates range migration and aids in achieving a high frame update rate. The chirp signals from differing transmitters can be separated on receive in the range spectrum domain, such that a MIMO virtual array construction is possible. Distinct chirps are delayed versions of the first chirp signal. Chirps overlap in the fast-time domain, but due to delay, there is separation in the range spectrum domain. When the delay is at least the instrument round-trip delay, transmitters are separable. Further, the wavelengths are identical across transmitters such that there is no residual-range versus angle ambiguity issue present in the claimed frequency-offset modulation range division MIMO system.Type: GrantFiled: December 17, 2020Date of Patent: October 24, 2023Assignee: NXP USA, Inc.Inventors: Ryan Haoyun Wu, Douglas Alan Garrity, Maik Brett
-
Patent number: 11799537Abstract: Aspects of the present disclosure are directed to radar signal processing apparatuses and methods. As may be implemented in accordance with one or more embodiments, digital signals representative of received reflections of radar signals transmitted towards a target are mathematically processed to provide or construct a matrix pencil based on or as a function of a forward-backward matrix. Eigenvalues of the matrix pencil are computed and an estimation of the direction of arrival (DoA) of the target is output based on the computed eigenvalues.Type: GrantFiled: July 28, 2021Date of Patent: October 24, 2023Assignee: NXP B.V.Inventors: Ryan Haoyun Wu, Dongyin Ren, Michael Andreas Staudenmaier, Maik Brett
-
Publication number: 20230314560Abstract: A vehicle radar system, apparatus and method use a radar control processing unit to generate a target response signal in at least a first dimension from compressed radar data signals and to perform cell-averaging constant false alarm rate (CA-CFAR) target detection by convolving the target response signal with a weighted kernel window signal in a frequency domain using a Fast Fourier Transform hardware accelerator, an element-wise multiplier, and an Inverse Fast Fourier Transform hardware accelerator to generate an output signal having a sign that indicates a target detection decision.Type: ApplicationFiled: April 1, 2022Publication date: October 5, 2023Applicant: NXP B.V.Inventors: Ryan Haoyun Wu, Satish Ravindran, Maik Brett
-
Patent number: 11762077Abstract: A radar system, apparatus, architecture, and method are provided for generating a transmit reference or chirp signal that is applied to a waveform generator having a frequency offset generator and a plurality of single channel modulation mixers configured to generate a plurality of transmit signals having different frequency offsets from the transmit reference signal for encoding and transmission as N radio frequency encoded transmit signals which are reflected from a target and received at a receive antenna as a target return signal that is down-converted to an intermediate frequency signal and converted by a high-speed analog-to-digital converter to a digital signal that is processed by a radar control processing unit which performs fast time processing steps to generate a range spectrum comprising N segments which correspond, respectively, to the N radio frequency encoded transmit signals transmitted over the N transmit antennas.Type: GrantFiled: December 9, 2019Date of Patent: September 19, 2023Assignee: NXP USA, Inc.Inventors: Ryan Haoyun Wu, Douglas Alan Garrity, Maik Brett
-
Patent number: 11668790Abstract: Aspects of the disclosure are directed to apparatuses, systems and methods for radar processing. As may be implemented in accordance with one or more aspects herein, an apparatus may include receiver circuitry to receive and sample radar signals reflected from a target, and processing circuitry to carry out the following. Representations of the reflections are transformed into the time-frequency domain where they are oversampled. The oversampled representations of the reflections are inversely transformed to provide resampled reflections. Positional characteristics of the target may then be ascertained by constructing a range response characterizing the target based on the resampled reflections.Type: GrantFiled: May 25, 2021Date of Patent: June 6, 2023Assignee: NXP B.V.Inventors: Ryan Haoyun Wu, Dongyin Ren, Michael Andreas Staudenmaier, Maik Brett
-
Patent number: 11662427Abstract: A radar system, apparatus, architecture, and method are provided for generating a transmit reference or chirp signal to produce a plurality of transmit signals having different frequency offsets from the transmit reference signal for encoding and transmission as N radio frequency encoded transmit signals which are reflected from a target and received at a receive antenna as a target return signal that is down-converted to an intermediate frequency signal and converted by a high-speed analog-to-digital converter to a digital signal that is processed by a radar control processing unit which performs fast time processing steps to generate a range spectrum comprising N segments which correspond, respectively, to the N radio frequency encoded transmit signals transmitted over the N transmit antennas.Type: GrantFiled: December 9, 2019Date of Patent: May 30, 2023Assignee: NXP USA, Inc.Inventors: Ryan Haoyun Wu, Douglas Alan Garrity, Maik Brett
-
Publication number: 20230160997Abstract: Described are method and systems that implement time frequency domain threshold interference and localization fusion to resolve interference issues in an automotive radar system, that produces spectrograms using Short-Time Fourier Transform (STFT) for all receiving antennas of the automotive radar system. For each STFT frequency a suppression threshold is determined. Interference is isolated for each STFT frequency by removing the interference from samples that are above the suppression threshold by using a filter. Direction of Arrival (DoA) is estimated for each interference spectrogram cell using measurements from all the receiving antennas. Interference samples are clustered using the DoA into epochs of chirps.Type: ApplicationFiled: November 23, 2021Publication date: May 25, 2023Applicant: NXP B.V.Inventors: Ryan Haoyun Wu, Feike Guus Jansen, Michael Andreas Staudenmaier, Maik Brett
-
Patent number: 11644566Abstract: Embodiments are disclosed that for synthetic aperture radar (SAR) systems and methods that process radar image data to generate radar images using vector processor engines, such as single-instruction-multiple-data (SIMD) processor engines. The vector processor engines can be further augmented with accelerators that vectorize element selection thereby expediting memory accesses required for interpolation operations performed by the vector processor engines.Type: GrantFiled: January 31, 2020Date of Patent: May 9, 2023Assignee: NXP USA, Inc.Inventors: Ryan Haoyun Wu, Jayakrishnan Cheriyath Mundarath, Sili Lu, Maik Brett
-
Publication number: 20230128469Abstract: A radar system, apparatus, architecture, and method are provided with a transmitter that produces a plurality of distinct FanTOM signals that are transmitted as N RF-encoded transmit signals in an overlapped fashion such that the pulse repetition interval and frame length are kept short; a receiver that processes target return signals reflected from the N RF-encoded transmit signals with a mixer to produce an IF signal which is filtered with one or more notch filters clocked with a sampling clock frequency to control harmonic notch frequencies to suppress transmitter spill-over and close-in self-clutter interference, thereby producing a filtered IF signal that is converted to a digital signal with an analog-to-digital converter that is clocked with the sampling clock frequency; and a radar processor that processes the digital signal to generate a range spectrum comprising N segments that correspond, respectively, to the N RF-encoded transmit signals.Type: ApplicationFiled: October 1, 2021Publication date: April 27, 2023Applicant: NXP B.V.Inventors: Douglas Alan Garrity, Ryan Haoyun Wu, Maik Brett
-
Patent number: 11636037Abstract: Exemplary aspects for a specific example concern a radar system having sensor circuitry including multiple radar sensors to provide sensor data via multiple virtual channels and multiple data types, a memory circuit with memory buffers, and a bus-interface circuit to control bus interconnects for bus communications involving a radar signal transmitter and the memory circuit. Radar signals are received and processed, via data acquisition path circuitry in multiple circuit paths and via streams of data in response to and to accommodate the operations of the sensor circuitry. A master controller conveys data, via the bus-interface circuit, to the buffers for the sensor data, and generates selectable-type transactions to be linked in selected ones of the buffers, in response to the data provided from the sensor circuitry and based on the sensor data being provided via different ones of the multiple virtual channels and of the multiple data types.Type: GrantFiled: April 16, 2021Date of Patent: April 25, 2023Assignee: NXP USA, Inc.Inventors: Maik Brett, Naveen Kumar Jain, Shreya Singh, Anshul Goel
-
Patent number: 11604686Abstract: A method of acquiring data, a computer program product for implementing the method, a system for acquiring data, and a vehicle including the system. The method includes determining one or more data types and virtual channels required for one or more applications. The method also includes allocating a plurality of circular buffers in memory according to the determined data type(s) and virtual channel(s). One or more of the circular buffers are allocated to safety data lines. The remaining circular buffers are allocated to functional data lines. The method further includes storing at least one functional data line in a circular buffer allocated to functional data lines according to a data type and virtual channel of the functional data line. The method also includes storing at least one safety data line in a circular buffer allocated to safety data lines.Type: GrantFiled: May 26, 2020Date of Patent: March 14, 2023Assignee: NXP USA, Inc.Inventors: Shreya Singh, Maik Brett, Arpita Agarwal, Shivali Jain, Anshul Goel, Naveen Kumar Jain
-
Publication number: 20230053001Abstract: Aspects of the present disclosure are directed to radar signal processing apparatuses and methods. As may be implemented in accordance with one or more embodiments, digital signals representative of received reflections of radar signals transmitted towards a target are mathematically processed to provide or construct a matrix pencil based on or as a function of a forward-backward matrix. Eigenvalues of the matrix pencil are computed and an estimation of the direction of arrival (DoA) of the target is output based on the computed eigenvalues.Type: ApplicationFiled: July 28, 2021Publication date: February 16, 2023Inventors: Ryan Haoyun Wu, Dongyin Ren, Michael Andreas Staudenmaier, Maik Brett
-
Publication number: 20220390555Abstract: Aspects of the disclosure are directed to apparatuses, systems and methods for radar processing. As may be implemented in accordance with one or more aspects herein, an apparatus may include receiver circuitry to receive and sample radar signals reflected from a target, and processing circuitry to carry out the following. Representations of the reflections are transformed into the time-frequency domain where they are oversampled. The oversampled representations of the reflections are inversely transformed to provide resampled reflections. Positional characteristics of the target may then be ascertained by constructing a range response characterizing the target based on the resampled reflections.Type: ApplicationFiled: May 25, 2021Publication date: December 8, 2022Inventors: Ryan Haoyun Wu, Dongyin Ren, Michael Andreas Staudenmaier, Maik Brett