Patents by Inventor Man Fai Ng

Man Fai Ng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160260841
    Abstract: A semiconductor is formed on an SOI substrate, such as an extremely thin SOI (ETSOI) substrate, with increased extension thickness. Embodiments include semiconductor devices having an epitaxially formed silicon-containing layer, such as embedded silicon germanium (eSiGe), on the SOI substrate. An embodiment includes forming an SOI substrate, epitaxially forming a silicon-containing layer on the SOI substrate, and forming a gate electrode on the epitaxially formed silicon-containing layer. After gate spacers and source/drain regions are formed, the gate electrode and underlying silicon-containing layer are removed and replaced with a high-k metal gate. The use of an epitaxially formed silicon-containing layer reduces SOI thickness loss due to fabrication process erosion, thereby increasing extension thickness and lowering extension resistance.
    Type: Application
    Filed: March 6, 2015
    Publication date: September 8, 2016
    Inventors: Bin YANG, Man Fai NG
  • Patent number: 8987110
    Abstract: A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: March 24, 2015
    Assignee: Globalfoundries, Inc.
    Inventors: Man Fai Ng, Bin Yang
  • Publication number: 20140183720
    Abstract: Methods of manufacturing semiconductor integrated circuits having a compressive nitride layer are disclosed. In one example, a method of fabricating an integrated circuit includes depositing an aluminum layer over a semiconductor substrate, depositing a tensile silicon nitride layer or a neutral silicon nitride layer over the aluminum layer, and depositing a compressive silicon nitride layer over the tensile silicon nitride layer or the neutral silicon nitride layer. The compressive silicon nitride layer is deposited at a thickness that is at least about twice a thickness of the tensile silicon nitride layer or the neutral silicon nitride layer. Further, there is no delamination present at an interface between the aluminum layer and the tensile silicon nitride layer or the neutral silicon nitride layer, or at an interface between tensile silicon nitride layer or the neutral silicon nitride layer and the compressive nitride layer.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Scott Beasor, Jay Strane, Man Fai Ng, Brett H. Engel, Chang Yong Xiao, Michael P. Belyansky, Tsung-Liang Chen, Kyung Bum Koo
  • Patent number: 8765537
    Abstract: A high-k metal gate electrode is formed with reduced gate voids. An embodiment includes forming a replaceable gate electrode, for example of amorphous silicon, having a top surface and a bottom surface, the top surface being larger than the bottom surface, removing the replaceable gate electrode, forming a cavity having a top opening larger than a bottom opening, and filling the cavity with metal. The larger top surface may be formed by etching the bottom portion of the amorphous silicon at greater temperature than the top portion, or by doping the top and bottom portions of the amorphous silicon differently such that the bottom has a greater lateral etch rate than the top.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 1, 2014
    Assignee: Globalfoundries Inc.
    Inventors: Man Fai Ng, Bin Yang
  • Patent number: 8680624
    Abstract: Methods and devices are provided for fabricating a semiconductor device having barrier regions within regions of insulating material resulting in outgassing paths from the regions of insulating material. A method comprises forming a barrier region within an insulating material proximate the isolated region of semiconductor material and forming a gate structure overlying the isolated region of semiconductor material. The barrier region is adjacent to the isolated region of semiconductor material, resulting in an outgassing path within the insulating material.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: March 25, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Man Fai Ng, Bin Yang
  • Patent number: 8674438
    Abstract: Apparatus for semiconductor device structures and related fabrication methods are provided. One method for fabricating a semiconductor device structure involves forming a gate structure overlying a region of semiconductor material, wherein the width of the gate structure is aligned with a <100> crystal direction of the semiconductor material. The method continues by forming recesses about the gate structure and forming a stress-inducing semiconductor material in the recesses.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: March 18, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Bin Yang, Man Fai Ng
  • Publication number: 20130320447
    Abstract: A semiconductor is formed on an SOI substrate, such as an extremely thin SOI (ETSOI) substrate, with increased extension thickness. Embodiments include semiconductor devices having an epitaxially formed silicon-containing layer, such as embedded silicon germanium (eSiGe), on the SOI substrate. An embodiment includes forming an SOI substrate, epitaxially forming a silicon-containing layer on the SOI substrate, and forming a gate electrode on the epitaxially formed silicon-containing layer. After gate spacers and source/drain regions are formed, the gate electrode and underlying silicon-containing layer are removed and replaced with a high-k metal gate. The use of an epitaxially formed silicon-containing layer reduces SOI thickness loss due to fabrication process erosion, thereby increasing extension thickness and lowering extension resistance.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 5, 2013
    Applicant: GLOBALFOUNDERIES Inc.
    Inventors: Bin YANG, Man Fai NG
  • Publication number: 20130249000
    Abstract: A short channel semiconductor device is formed with halo regions that are separated from the bottom of the gate electrode and from each other. Embodiments include implanting halo regions after forming source/drain regions and source/drain extension regions. An embodiment includes forming source/drain extension regions in a substrate, forming source/drain regions in the substrate, forming halo regions under the source/drain extension regions, after forming the source drain regions, and forming a gate electrode on the substrate between the source/drain regions. By forming the halo regions after the high temperature processing involved informing the source/drain and source/drain extension regions, halo diffusion is minimized, thereby maintaining sufficient distance between halo regions and reducing short channel NMOS Vt roll-off.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Bin Yang, Man Fai Ng
  • Patent number: 8518758
    Abstract: A semiconductor is formed on an SOI substrate, such as an extremely thin SOI (ETSOI) substrate, with increased extension thickness. Embodiments include semiconductor devices having an epitaxially formed silicon-containing layer, such as embedded silicon germanium (eSiGe), on the SOI substrate. An embodiment includes forming an SOI substrate, epitaxially forming a silicon-containing layer on the SOI substrate, and forming a gate electrode on the epitaxially formed silicon-containing layer. After gate spacers and source/drain regions are formed, the gate electrode and underlying silicon-containing layer are removed and replaced with a high-k metal gate. The use of an epitaxially formed silicon-containing layer reduces SOI thickness loss due to fabrication process erosion, thereby increasing extension thickness and lowering extension resistance.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: August 27, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Bin Yang, Man Fai Ng
  • Patent number: 8445342
    Abstract: A short channel semiconductor device is formed with halo regions that are separated from the bottom of the gate electrode and from each other. Embodiments include implanting halo regions after forming source/drain regions and source/drain extension regions. An embodiment includes forming source/drain extension regions in a substrate, forming source/drain regions in the substrate, forming halo regions under the source/drain extension regions, after forming the source drain regions, and forming a gate electrode on the substrate between the source/drain regions. By forming the halo regions after the high temperature processing involved informing the source/drain and source/drain extension regions, halo diffusion is minimized, thereby maintaining sufficient distance between halo regions and reducing short channel NMOS Vt roll-off.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: May 21, 2013
    Assignee: Globalfoundries Inc.
    Inventors: Bin Yang, Man Fai Ng
  • Patent number: 8394691
    Abstract: Apparatus for semiconductor device structures and related fabrication methods are provided. One method for fabricating a semiconductor device structure involves forming a gate structure overlying a region of semiconductor material, wherein the width of the gate structure is aligned with a <100> crystal direction of the semiconductor material. The method continues by forming recesses about the gate structure and forming a stress-inducing semiconductor material in the recesses.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: March 12, 2013
    Assignee: Globalfoundries, Inc.
    Inventors: Bin Yang, Man Fai Ng
  • Patent number: 8390042
    Abstract: Improved semiconductor devices including metal gate electrodes are formed with reduced performance variability by reducing the initial high dopant concentration at the top portion of the silicon layer overlying the metal layer. Embodiments include reducing the dopant concentration in the upper portion of the silicon layer, by implanting a counter-dopant into the upper portion of the silicon layer, removing the high dopant concentration portion and replacing it with undoped or lightly doped silicon, and applying a gettering agent to the upper surface of the silicon layer to form a thin layer with the gettered dopant, which layer can be removed or retained.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: March 5, 2013
    Assignee: Globalfoundries Inc.
    Inventors: Man Fai Ng, Rohit Pal
  • Publication number: 20130005128
    Abstract: A high-k metal gate electrode is formed with reduced gate voids. An embodiment includes forming a replaceable gate electrode, for example of amorphous silicon, having a top surface and a bottom surface, the top surface being larger than the bottom surface, removing the replaceable gate electrode, forming a cavity having a top opening larger than a bottom opening, and filling the cavity with metal. The larger top surface may be formed by etching the bottom portion of the amorphous silicon at greater temperature than the top portion, or by doping the top and bottom portions of the amorphous silicon differently such that the bottom has a greater lateral etch rate than the top.
    Type: Application
    Filed: September 7, 2012
    Publication date: January 3, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Man Fai NG, Bin Yang
  • Patent number: 8329515
    Abstract: An eFUSE is formed with a gate stack including a layer of embedded silicon germanium (eSiGe) on the polysilicon. An embodiment includes forming a shallow trench isolation (STI) region in a substrate, forming a first gate stack on the substrate for a PMOS device, forming a second gate stack on an STI region for an eFUSE, forming first embedded silicon germanium (eSiGe) on the substrate on first and second sides of the first gate stack, and forming second eSiGe on the second gate stack. The addition of eSiGe to the eFUSE gate stack increases the distance between the eFUSE debris zone and an underlying metal gate, thereby preventing potential shorting.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: December 11, 2012
    Assignee: Globalfoundries Inc.
    Inventors: Bin Yang, Man Fai Ng
  • Publication number: 20120235237
    Abstract: Methods and devices are provided for fabricating a semiconductor device having barrier regions within regions of insulating material resulting in outgassing paths from the regions of insulating material. A method comprises forming a barrier region within an insulating material proximate the isolated region of semiconductor material and forming a gate structure overlying the isolated region of semiconductor material. The barrier region is adjacent to the isolated region of semiconductor material, resulting in an outgassing path within the insulating material.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 20, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Man Fai NG, Bin YANG
  • Publication number: 20120220095
    Abstract: A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
    Type: Application
    Filed: May 9, 2012
    Publication date: August 30, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Man Fai NG, Bin YANG
  • Patent number: 8222093
    Abstract: Methods and devices are provided for fabricating a semiconductor device having barrier regions within regions of insulating material resulting in outgassing paths from the regions of insulating material. A method comprises forming a barrier region within an insulating material proximate the isolated region of semiconductor material and forming a gate structure overlying the isolated region of semiconductor material. The barrier region is adjacent to the isolated region of semiconductor material, resulting in an outgassing path within the insulating material.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: July 17, 2012
    Assignee: Globalfoundries, Inc.
    Inventors: Man Fai Ng, Bin Yang
  • Patent number: 8198170
    Abstract: A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: June 12, 2012
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Man Fai Ng, Bin Yang
  • Publication number: 20120119308
    Abstract: Improved semiconductor devices including metal gate electrodes are formed with reduced performance variability by reducing the initial high dopant concentration at the top portion of the silicon layer overlying the metal layer. Embodiments include reducing the dopant concentration in the upper portion of the silicon layer, by implanting a counter-dopant into the upper portion of the silicon layer, removing the high dopant concentration portion and replacing it with undoped or lightly doped silicon, and applying a gettering agent to the upper surface of the silicon layer to form a thin layer with the gettered dopant, which layer can be removed or retained.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 17, 2012
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Man Fai NG, Rohit Pal
  • Publication number: 20120094466
    Abstract: A fabrication method for a semiconductor device structure is provided. The device structure has a layer of silicon and a layer of silicon dioxide overlying the layer of silicon, and the method begins by forming an isolation recess by removing a portion of the silicon dioxide and a portion of the silicon. The isolation recess is filled with stress-inducing silicon nitride and, thereafter, the silicon dioxide is removed such that the stress-inducing silicon nitride protrudes above the silicon. Next, the exposed silicon is thermally oxidized to form silicon dioxide hardmask material overlying the silicon. Thereafter, a first portion of the silicon dioxide hardmask material is removed to reveal an accessible surface of the silicon, while leaving a second portion of the silicon dioxide hardmask material intact. Next, silicon germanium is epitaxially grown from the accessible surface of the silicon.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 19, 2012
    Inventors: Man Fai NG, Bin YANG