Patents by Inventor Man Lung Mui

Man Lung Mui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7978526
    Abstract: In sensing a page of nonvolatile memory cells with a corresponding group of sense modules in parallel, as each high current cell is identified, it is locked out from further sensing while others in the page continued to be sensed. The sense module involved in the locked out is then in a lockout mode and becomes inactive. A noise source from the sense module becomes significant when in the lockout mode. The noise is liable to interfere with the sensing of neighboring cells by coupling through its bit line to neighboring ones. The noise can also couple through the common source line of the page to affect the accuracy of ongoing sensing of the cells in the page. Improved sense modules and method isolate the noise from the lockout sense module from affecting the other sense modules still active in sensing memory cell in the page.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: July 12, 2011
    Assignee: Sandisk Corporation
    Inventors: Hao Thai Nguyen, Man Lung Mui, Seungpil Lee
  • Patent number: 7957197
    Abstract: Sensing circuits for sensing a conduction current of a memory cell among a group of non-volatile memory cells being sensed in parallel and providing the result of the sensing to a data bus are presented. A precharge circuit is coupled to a node for charging the node to an initial voltage. An intermediate circuit is also coupled to the node and connectable to the memory cell, by which current from the precharge circuit can be supplied to the memory cell. The circuit also includes a comparator circuit to perform a determination of the conduction current by a rate of discharge at the node; a data latch coupled to the comparator circuit to hold the result of this determination; and a transfer gate coupled to the data latch to supply a latched result to the data bus independently of the node. This arrangement improves sensing performance and can help to eliminate noise on the analog sensing path during sensing and reduce switching current.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: June 7, 2011
    Assignee: SanDisk Corporation
    Inventors: Hao Thai Nguyen, Man Lung Mui, Seungpil Lee, Fanglin Zhang, Chi-Ming Wang
  • Patent number: 7751250
    Abstract: Accuracy of sensing operations, such as read or verify, in a memory device is improved by avoiding fluctuations in a sense amp supply voltage which can occur when different sense amps are strobed at different times. First and second sets of sense amps perform a sensing operation on respective storage elements, such as in an all bit line configuration. The first set of sense amps is strobed at a first time point. In response, a sensed analog level is converted to digital data. The A/D conversion relies on the sense amp supply voltage being accurate. To avoid a fluctuation in the sense amp supply voltage, a bypass path allows the storage elements associated with the first set of sense amps to continue to draw power from the sense amp supply voltage. The second set of sense amps is strobed at a later, second time point.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: July 6, 2010
    Assignee: Sandisk Corporation
    Inventors: Seungpil Lee, Hao Thai Nguyen, Man Lung Mui
  • Patent number: 7751249
    Abstract: In a sensing method, accuracy of sensing operations, such as read or verify, in a memory device is improved by avoiding fluctuations in a sense amp supply voltage which can occur when different sense amps are strobed at different times. First and second sets of sense amps perform a sensing operation on respective storage elements, such as in an all bit line configuration. The first set of sense amps is strobed at a first time point. In response, a sensed analog level is converted to digital data. The A/D conversion relies on the sense amp supply voltage being accurate. To avoid a fluctuation in the sense amp supply voltage, a bypass path allows the storage elements associated with the first set of sense amps to continue to draw power from the sense amp supply voltage. The second set of sense amps is strobed at a later, second time point.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: July 6, 2010
    Assignee: Sandisk Corporation
    Inventors: Seungpil Lee, Hao Thai Nguyen, Man Lung Mui
  • Publication number: 20100008148
    Abstract: In sensing a page of nonvolatile memory cells with a corresponding group of sense modules in parallel, as each high current cell is identified, it is locked out from further sensing while others in the page continued to be sensed. The sense module involved in the locked out is then in a lockout mode and becomes inactive. A noise source from the sense module becomes significant when in the lockout mode. The noise is liable to interfere with the sensing of neighboring cells by coupling through its bit line to neighboring ones. The noise can also couple through the common source line of the page to affect the accuracy of ongoing sensing of the cells in the page. Improved sense modules and method isolate the noise from the lockout sense module from affecting the other sense modules still active in sensing memory cell in the page.
    Type: Application
    Filed: September 21, 2009
    Publication date: January 14, 2010
    Inventors: Hao Thai Nguyen, Man Lung Mui, Seungpil Lee
  • Publication number: 20090323420
    Abstract: In a sensing method, accuracy of sensing operations, such as read or verify, in a memory device is improved by avoiding fluctuations in a sense amp supply voltage which can occur when different sense amps are strobed at different times. First and second sets of sense amps perform a sensing operation on respective storage elements, such as in an all bit line configuration. The first set of sense amps is strobed at a first time point. In response, a sensed analog level is converted to digital data. The A/D conversion relies on the sense amp supply voltage being accurate. To avoid a fluctuation in the sense amp supply voltage, a bypass path allows the storage elements associated with the first set of sense amps to continue to draw power from the sense amp supply voltage. The second set of sense amps is strobed at a later, second time point.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: Seungpil Lee, Hao Thai Nguyen, Man Lung Mui
  • Publication number: 20090323421
    Abstract: Accuracy of sensing operations, such as read or verify, in a memory device is improved by avoiding fluctuations in a sense amp supply voltage which can occur when different sense amps are strobed at different times. First and second sets of sense amps perform a sensing operation on respective storage elements, such as in an all bit line configuration. The first set of sense amps is strobed at a first time point. In response, a sensed analog level is converted to digital data. The A/D conversion relies on the sense amp supply voltage being accurate. To avoid a fluctuation in the sense amp supply voltage, a bypass path allows the storage elements associated with the first set of sense amps to continue to draw power from the sense amp supply voltage. The second set of sense amps is strobed at a later, second time point.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: Seungpil Lee, Hao Thai Nguyen, Man Lung Mui
  • Publication number: 20090296488
    Abstract: Sensing circuits for sensing a conduction current of a memory cell among a group of non-volatile memory cells being sensed in parallel and providing the result thereof to a data bus are presented. A precharge circuit is coupled to a node for charging the node to an initial voltage. An intermediate circuit is also coupled to the node and connectable to the memory cell, whereby current from the precharge circuit can be supplied to the memory cell. The circuit also includes a comparator circuit to perform a determination the conduction current by a rate of discharge at the node; a data latch coupled to the comparator circuit to hold the result of said determination; and a transfer gate coupled to the data latch to supply a result latched therein to the data bus independently of the node. This arrangement improves sensing performance and can help to eliminate noise on the analog sensing path during sensing and reduce switching current.
    Type: Application
    Filed: May 28, 2008
    Publication date: December 3, 2009
    Inventors: Hao Thai Nguyen, Man Lung Mui, Seungpil Lee, Fanglin Zhang, Chi-Ming Wang
  • Patent number: 7616506
    Abstract: Shifts in the apparent charge stored by a charge storage region such as a floating gate in a non-volatile memory cell can occur because of electrical field coupling based on charge stored by adjacent cells. To account for the shift, compensations are applied when reading. When reading a selected word line, the adjacent word line is read first and the data stored in a set of data latches for each bit line. One latch for each bit line stores an indication that the data is from the adjacent word line. The selected word line is then read with compensations based on the different states of the cells on the adjacent word line. Each sense module uses the data from the adjacent word line to select the results of sensing with the appropriate compensation for its bit line. The data from the adjacent word line is overwritten with data from the selected word line at the appropriate time and the indication updated to reflect that the latches store data from the selected word line.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 10, 2009
    Assignee: SanDisk Corporation
    Inventors: Man Lung Mui, Seungpil Lee
  • Patent number: 7616505
    Abstract: Shifts in the apparent charge stored by a charge storage region such as a floating gate in a non-volatile memory cell can occur because of electrical field coupling based on charge stored by adjacent cells. To account for the shift, compensations are applied when reading. When reading a selected word line, the adjacent word line is read first and the data stored in a set of data latches for each bit line. One latch for each bit line stores an indication that the data is from the adjacent word line. The selected word line is then read with compensations based on the different states of the cells on the adjacent word line. Each sense module uses the data from the adjacent word line to select the results of sensing with the appropriate compensation for its bit line. The data from the adjacent word line is overwritten with data from the selected word line at the appropriate time and the indication updated to reflect that the latches store data from the selected word line.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 10, 2009
    Assignee: SanDisk Corporation
    Inventors: Man Lung Mui, Seungpil Lee
  • Patent number: 7606071
    Abstract: A source line bias error caused by a voltage drop in a source line of a non-volatile memory device during a read or verify operation is addressed. In one approach, a body bias is applied to a substrate of the non-volatile memory device by coupling the substrate to a source voltage or a voltage which is a function of the source voltage. In another approach, a control gate voltage and/or drain voltage, e.g., bit line voltage, are compensated by referencing them to a voltage which is based on the source voltage instead of to ground. Various combinations of these approaches can be used as well. During other operations, such as programming, erase-verify and sensing of negative threshold voltages, the source line bias error is not present, so there is no need for a bias or compensation. A forward body bias can also be compensated.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: October 20, 2009
    Assignee: SanDisk Corporation
    Inventors: Deepak Chandra Sekar, Nima Mokhlesi, Hao Thai Nguyen, Seungpil Lee, Man Lung Mui
  • Patent number: 7606076
    Abstract: A pull down circuit pulls a bit line voltage to a regulated source voltage in a non-volatile storage device during a sense operation such as a verify operation which occurs during programming. The storage device may include NAND strings which have associated bit lines and sense components, and a common source line. When a selected storage element of a NAND string has been programmed to its intended state, the bit line is locked out during subsequent verify operations which occur for other NAND strings which are not yet locked out. The pull down device is coupled to each bit line and to the common source line, whose voltage is regulated at a positive DC level, to prevent coupling of system power bus (VSS) noise from the locked out bit lines to the not yet locked out bit lines.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: October 20, 2009
    Assignee: SanDisk Corporation
    Inventors: Hao Thai Nguyen, Man Lung Mui, Seungpil Lee, Chi-Ming Wang
  • Patent number: 7606072
    Abstract: A source line bias error caused by a voltage drop in a source line of a non-volatile memory device during a read or verify operation is addressed. In one approach, a body bias is applied to a substrate of the non-volatile memory device by coupling the substrate to a source voltage or a voltage which is a function of the source voltage. In another approach, a control gate voltage and/or drain voltage, e.g., bit line voltage, are compensated by referencing them to a voltage which is based on the source voltage instead of to ground. Various combinations of these approaches can be used as well. During other operations, such as programming, erase-verify and sensing of negative threshold voltages, the source line bias error is not present, so there is no need for a bias or compensation. A forward body bias can also be compensated.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: October 20, 2009
    Assignee: SanDisk Corporation
    Inventors: Deepak Chandra Sekar, Nima Mokhlesi, Hao Thai Nguyen, Seungpil Lee, Man Lung Mui
  • Patent number: 7593265
    Abstract: In sensing a page of nonvolatile memory cells with a corresponding group of sense modules in parallel, as each high current cell is identified, it is locked out from further sensing while others in the page continued to be sensed. The sense module involved in the locked out is then in a lockout mode and becomes inactive. A noise source from the sense module becomes significant when in the lockout mode. The noise is liable to interfere with the sensing of neighboring cells by coupling through its bit line to neighboring ones. The noise can also couple through the common source line of the page to affect the accuracy of ongoing sensing of the cells in the page. Improved sense modules and method isolate the noise from the lockout sense module from affecting the other sense modules still active in sensing memory cell in the page.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: September 22, 2009
    Assignee: Sandisk Corporation
    Inventors: Hao Thai Nguyen, Man Lung Mui, Seungpil Lee
  • Patent number: 7577031
    Abstract: Variation in programming efficacy due to variation in time constants along a word line that spans across a memory plane is compensated by adjusting the bit line voltages across the plane to modify the programming rates. In this way, the variation in programming efficacy is substantially reduced during programming of a group of memory cells coupled to the word line. This will allow uniform optimization of programming across the group of memory cells and reduce the number of programming pulses required to program the group of memory cells, thereby improving performance. In one embodiment, during programming, the bit lines in a first half of the memory plane closer to a source of word line voltage is set to a first voltage and the bit lines in a second half of the memory plane further from the source of word line voltage is set to a second voltage.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: August 18, 2009
    Assignee: Sandisk Corporation
    Inventors: Deepak Chandra Sekar, Man Lung Mui, Nima Mokhlesi
  • Publication number: 20090168540
    Abstract: In sensing a page of nonvolatile memory cells with a corresponding group of sense modules in parallel, as each high current cell is identified, it is locked out from further sensing while others in the page continued to be sensed. The sense module involved in the locked out is then in a lockout mode and becomes inactive. A noise source from the sense module becomes significant when in the lockout mode. The noise is liable to interfere with the sensing of neighboring cells by coupling through its bit line to neighboring ones. The noise can also couple through the common source line of the page to affect the accuracy of ongoing sensing of the cells in the page. Improved sense modules and method isolate the noise from the lockout sense module from affecting the other sense modules still active in sensing memory cell in the page.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Inventors: Hao Thai Nguyen, Man Lung Mui, Seungpil Lee
  • Patent number: 7545678
    Abstract: A NAND string in which bit line-to-bit line noise is discharged prior to sensing a programming condition of a selected non-volatile storage element in the NAND string. A source voltage is applied which boosts the voltage in conductive NAND strings. The voltage boost results in capacitive coupling of noise to neighboring NAND strings. A current pull down device is used to discharge each NAND string prior to performing sensing. After each NAND string is coupled to a discharge path for a predetermined amount of time, bit lines of the NAND string are coupled to voltage sense components for sensing the programming condition of the selected non-volatile storage elements based on a potential of the bit lines. The selected non-volatile storage elements may have a negative threshold voltage. Further, a word line associated with the selected non-volatile storage elements may be set at ground.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 9, 2009
    Assignee: SanDisk Corporation
    Inventors: Seungpil Lee, Hao Thai Nguyen, Man Lung Mui
  • Patent number: 7539060
    Abstract: A non-volatile storage device in which current sensing is performed for a non-volatile storage element. A voltage is applied to a selected word line of the first non-volatile storage element, and source and p-well voltages are applied to a source and a p-well, respectively, associated with the non-volatile storage element. The source and p-well voltages are regulated at respective positive DC levels to avoid a ground bounce, or voltage fluctuation, which would occur if the source voltage at least was regulated at a ground voltage. A programming condition of the non-volatile storage element is determined by sensing a current in a NAND string of the non-volatile storage element. The sensing can occur quickly since there is no delay in waiting for the ground bounce to settle.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 26, 2009
    Assignee: SanDisk Corporation
    Inventors: Hao Thai Nguyen, Seungpil Lee, Man Lung Mui, Shahzad Khalid, Hock So, Prashanti Govindu
  • Patent number: 7532516
    Abstract: A non-volatile storage device in which current sensing is performed for a non-volatile storage element with a negative threshold voltage. A control gate read voltage is applied to a selected word line of a non-volatile storage element, and source and p-well voltages are applied to a source and a p-well, respectively, associated with the non-volatile storage element. The source and p-well voltages exceed the control gate read voltage so that a positive control gate read voltage can be used. There is no need for a negative charge pump to apply a negative word line voltage even for sensing a negative threshold voltage. A programming condition of the non-volatile storage element is determined by sensing a voltage drop which is tied to a fixed current which flows in a NAND string of the non-volatile storage element.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 12, 2009
    Assignee: SanDisk Corporation
    Inventors: Hao Thai Nguyen, Seungpil Lee, Man Lung Mui, Shahzad Khalid, Hock So, Prashanti Govindu, Nima Mokhlesi, Deepak Chandra Sekar
  • Patent number: 7508713
    Abstract: Variation in programming efficacy due to variation in time constants along a word line that spans across a memory plane is compensated by adjusting the bit line voltages across the plane to modify the programming rates. In this way, the variation in programming efficacy is substantially reduced during programming of a group of memory cells coupled to the word line. This will allow uniform optimization of programming across the group of memory cells and reduce the number of programming pulses required to program the group of memory cells, thereby improving performance. In one embodiment, during programming, the bit lines in a first half of the memory plane closer to a source of word line voltage is set to a first voltage by a first voltage shifter and the bit lines in a second half of the memory plane further from the source of word line voltage is set to a second voltage by a second voltage shifter.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: March 24, 2009
    Assignee: Sandisk Corporation
    Inventors: Deepak Chandra Sekar, Man Lung Mui, Nima Mokhlesi