Patents by Inventor Manish Deopura

Manish Deopura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10220487
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: March 5, 2019
    Assignee: Cabot Microelectronics Corporation
    Inventors: Pradip K. Roy, Manish Deopura, Sudhanshu Misra
  • Publication number: 20160229025
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Application
    Filed: February 12, 2016
    Publication date: August 11, 2016
    Inventors: Pradip K. ROY, Manish DEOPURA, Sudhanshu MISRA
  • Patent number: 9278424
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior themo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: March 8, 2016
    Assignee: NexPlanar Corporation
    Inventors: Pradip K Roy, Manish Deopura, Sudhanshu Misra
  • Publication number: 20150093977
    Abstract: Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
    Type: Application
    Filed: December 5, 2014
    Publication date: April 2, 2015
    Inventors: Manish Deopura, Hem M. Vaidya, Pradip K. Roy
  • Publication number: 20150065020
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior themo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 5, 2015
    Inventors: Pradip K. Roy, Manish Deopura, Sudhanshu Misra
  • Patent number: 8932116
    Abstract: Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: January 13, 2015
    Assignee: NexPlanar Corporation
    Inventors: Manish Deopura, Hem M. Vaidya, Pradip K. Roy
  • Patent number: 8864859
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: October 21, 2014
    Assignee: NexPlanar Corporation
    Inventors: Pradip K. Roy, Manish Deopura, Sudhanshu Misra
  • Patent number: 8715035
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: May 6, 2014
    Assignee: NexPlanar Corporation
    Inventors: Pradip K. Roy, Manish Deopura, Sudhanshu Misra
  • Publication number: 20130059509
    Abstract: Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 7, 2013
    Inventors: Manish Deopura, Hem M. Vaidya, Pradip K. Roy
  • Patent number: 8287793
    Abstract: Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous grooves, double spiral grooves, and multiple overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: October 16, 2012
    Assignee: NexPlanar Corporation
    Inventors: Manish Deopura, Hem M. Vaidya, Pradip K. Roy
  • Publication number: 20110014482
    Abstract: The present invention provides a method of forming ductile multilayer silicone resin films. The method may include forming a silicone resin film comprising at least two polymer layers, at least one of them being a silicone resin layer. The thickness of the silicone resin layer(s) is less than a corresponding ductile transition thickness.
    Type: Application
    Filed: June 4, 2007
    Publication date: January 20, 2011
    Applicant: DOW CORNING CORPORATION
    Inventors: Bizhong Zhu, Dimitris E. Katsoulis, Manish Deopura, Andrew Satorius, Raymond L. Tabler, Richard Rabe, Gifford N. Shearer
  • Patent number: 7704125
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: April 27, 2010
    Assignee: NexPlanar Corporation
    Inventors: Pradip K. Roy, Manish Deopura, Sudhanshu Misra
  • Publication number: 20090053976
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Application
    Filed: February 21, 2006
    Publication date: February 26, 2009
    Inventors: Pradip K. Roy, Manish Deopura, Sudhanshu Misra
  • Publication number: 20080211141
    Abstract: Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
    Type: Application
    Filed: November 28, 2007
    Publication date: September 4, 2008
    Inventors: Manish Deopura, Hem M. Vaidya, Pradip K. Roy
  • Publication number: 20080207100
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior thermo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Application
    Filed: November 28, 2007
    Publication date: August 28, 2008
    Inventors: Pradip K. Roy, Manish Deopura, Sudhanshu Misra
  • Patent number: 7377840
    Abstract: Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: May 27, 2008
    Assignee: Neopad Technologies Corporation
    Inventors: Manish Deopura, Hem M. Vaidya, Pradip K. Roy
  • Publication number: 20060276109
    Abstract: The present application relates to polishing pads for chemical mechanical planarization (CMP) of substrates, and methods of fabrication and use thereof. The pads described in this invention are customized to polishing specifications where specifications include (but not limited to) to the material being polished, chip design and architecture, chip density and pattern density, equipment platform and type of slurry used. These pads can be designed with a specialized polymeric nano-structure with a long or short range order which allows for molecular level tuning achieving superior themo-mechanical characteristics. More particularly, the pads can be designed and fabricated so that there is both uniform and nonuniform spatial distribution of chemical and physical properties within the pads.
    Type: Application
    Filed: October 14, 2005
    Publication date: December 7, 2006
    Inventors: Pradip Roy, Manish Deopura, Sudhanshu Misra
  • Publication number: 20060189269
    Abstract: Various examples of customized polishing pads are given, along with methods of making and using such customized polishing pads. The subject customized pads are designed and fabricated so that there is spatial distribution of chemical and physical properties of the pads that are customized for performance suited to a specific type of substrate, as well as fabrication control in implementing such customized design. Such customized design and fabrication control produce a monolithic pad thereby specifically suited to provide uniform performance of CMP of the targeted substrate.
    Type: Application
    Filed: February 18, 2005
    Publication date: August 24, 2006
    Inventors: Pradip Roy, Manish Deopura, Sudhanshu Misra
  • Publication number: 20060019587
    Abstract: Methods for producing in-situ grooves in CMP pads are provided. In general, the methods for producing in-situ grooves comprise the steps of patterning a silicone lining, placing the silicone lining in, or on, a mold, adding CMP pad material to the silicone lining, and allowing the CMP pad to solidify. CMP pads comprising novel groove designs are also described. For example, described here are CMP pads comprising concentric circular grooves and axially curved grooves, reverse logarithmic grooves, overlapping circular grooves, lassajous groves, double spiral grooves, and multiply overlapping axially curved grooves. The CMP pads may be made from polyurethane, and the grooves produced therein may be made by a method from the group consisting of silicone lining, laser writing, water jet cutting, 3-D printing, thermoforming, vacuum forming, micro-contact printing, hot stamping, and mixtures thereof.
    Type: Application
    Filed: July 21, 2004
    Publication date: January 26, 2006
    Inventors: Manish Deopura, Hem Vaidya, Pradip Roy