Patents by Inventor Manoj Kanskar

Manoj Kanskar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220190545
    Abstract: In an example, a tandem pumped fiber amplifier may include a seed laser, a first section coupled to an output of the seed laser, and a second section coupled to an output of the first section. The first section may operate as an oscillator, and may receive pump light from one or more diode pumps, and may the first section may be arranged to convert the one or more diode pumps into a tandem pump. The second section may operate as a power amplifier, and may include a length of a single or plural active core fiber. The tandem pumped fiber amplifier may be arranged to mitigate spectral broadening related to four-wave mixing.
    Type: Application
    Filed: March 4, 2022
    Publication date: June 16, 2022
    Applicant: NLight, Inc.
    Inventors: Manoj Kanskar, Jiamin Zhang
  • Publication number: 20220181835
    Abstract: In an example, a tandem pumped fiber amplifier may include a seed laser, one or more diode pumps, and a single or plural active core fiber. The single or plural active core fiber may include a first section to operate as an oscillator and a second different section to operate as a power amplifier. The one or more diode pumps may be optically coupled to the first section of the single or plural active core fiber, and the seed laser may be optically coupled to the single active core or an innermost core of the plural active core fiber.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 9, 2022
    Applicant: NLIGHT, INC.
    Inventors: Manoj Kanskar, Jiamin Zhang
  • Patent number: 11353650
    Abstract: Large mode area optical fibers include cores that are selected to be smaller than a core size associated with a minimum mode field diameter of a lowest order mode. Cross-sectional shape of such cores can be circular or annular, and a plurality of such cores can be used. Gain regions can be provided in cores or claddings, and selected to produce a selected state of polarization.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: June 7, 2022
    Assignee: nLIGHT, Inc.
    Inventor: Manoj Kanskar
  • Publication number: 20220123519
    Abstract: A laser diode package, comprising a housing having a metal base portion, an integrated heat spreader formed within the base, the integrated heat spreader comprising a first phase-change material (PCM) and configured to dissipate heat via phase-change cooling. A heat source may be disposed on a top surface of the base, the heat source may be thermally coupled to the integrated heat spreader so as to dissipate heat away from the heat source via phase-change cooling.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 21, 2022
    Applicant: NLIGHT, INC.
    Inventor: Manoj KANSKAR
  • Publication number: 20220077657
    Abstract: A laser diode, comprising a transverse waveguide comprising an active layer between an n-type semiconductor layer and a p-type semiconductor layer wherein the transverse waveguide is bounded by a lower index n-cladding layer on an n-side of the transverse waveguide and a lower index p-cladding layer on a p-side of the transverse waveguide a cavity that is orthogonal to the transverse waveguide, wherein the cavity is bounded in a longitudinal direction at a first end by a high reflector (HR) facet and at a second end by a partial reflector (PR) facet, and a first contact layer electrically coupled to the waveguide and configured to vary an amount of current injected into the waveguide in the longitudinal direction so as to inject more current near the HR facet than at the PR facet.
    Type: Application
    Filed: December 20, 2019
    Publication date: March 10, 2022
    Applicant: NLIGHT, INC.
    Inventors: Manoj KANSKAR, Zhigang CHEN
  • Patent number: 11211765
    Abstract: In an example, a tandem pumped fiber amplifier may include a seed laser, one or more diode pumps, and a single or plural active core fiber. The single or plural active core fiber may include a first section to operate as an oscillator and a second different section to operate as a power amplifier. The one or more diode pumps may be optically coupled to the first section of the single or plural active core fiber, and the seed laser may be optically coupled to the single active core or an innermost core of the plural active core fiber.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 28, 2021
    Assignee: NLIGHT, INC.
    Inventors: Manoj Kanskar, Jiamin Zhang
  • Patent number: 11063404
    Abstract: Disclosed are embodiments of bidirectionally emitting semiconductor (BEST) laser architectures including higher order mode suppression structures. The higher order mode suppression structures are centrally located and extend from an inner transition boundary, which may be established by confronting high reflector (HR) facets in some embodiments or a central plane defining two sides of a unitary, bidirectional optical cavity in other embodiments. Examples of the higher order mode suppression structures include narrow regions of bidirectional flared laser oscillator waveguide (FLOW) devices, which are also referred to as reduced mode diode (REM) devices; high-index regions of bidirectional higher-order mode suppressed laser (HOMSL) devices; and non- or less-etched gain-guided lateral waveguides of bidirectional low divergence semiconductor laser (LODSL) devices.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: July 13, 2021
    Assignee: nLIGHT, Inc.
    Inventor: Manoj Kanskar
  • Publication number: 20210159673
    Abstract: A number of beams that can be coupled into an optical fiber can be increased using emitted beams having greater divergence, thus providing increased beam power. Alternatively, with a fixed number of emitters, total optical power can be maintained with fewer beams in an output beam with a smaller numerical aperture.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 27, 2021
    Applicant: nLIGHT, Inc.
    Inventors: Zhigang Chen, David Martin Hemenway, Manoj Kanskar
  • Publication number: 20210126435
    Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.
    Type: Application
    Filed: November 9, 2020
    Publication date: April 29, 2021
    Applicant: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
  • Patent number: 10951001
    Abstract: In an example, an apparatus to tandem pump a fiber laser or fiber amplifier may include a combiner; a power amplifier or a power oscillator, or a combination thereof, coupled to an output of the combiner; a seed laser to output light to the power amplifier or the power oscillator, or the combination thereof, via the combiner; and a tandem pump to generate light of a pump source signal, wherein the light of the pump source signal is output to the combiner to cladding pump the power amplifier or the power oscillator, or the combination thereof. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: March 16, 2021
    Assignee: NLIGHT, INC.
    Inventor: Manoj Kanskar
  • Patent number: 10862265
    Abstract: A device for cooling a laser diode pump comprising a Low Size Weight Power Efficient (SWAP) Laser Diode (LSLD) assembly, including a laser diode coupled to a submount on a first surface, the submount comprising a first thermally conductive material and a heatsink coupled to a second surface of the submount, wherein the heatsink comprises a second thermally conductive material, the heatsink comprising one or more members formed on a side opposite the coupled submount.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: December 8, 2020
    Assignee: NLIGHT, INC.
    Inventors: Manoj Kanskar, Johannes Boelen
  • Patent number: 10855056
    Abstract: A number of beams that can be coupled into an optical fiber can be increased using emitted beams having greater divergence, thus providing increased beam power. Alternatively, with a fixed number of emitters, total optical power can be maintained with fewer beams in an output beam with a smaller numerical aperture.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: December 1, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Zhigang Chen, David Martin Hemenway, Manoj Kanskar
  • Publication number: 20200371285
    Abstract: An apparatus for scattering light may include: an optical fiber having a first length; and a sleeve, having a second length shorter than the first length, around the optical fiber. The optical fiber may include: a core; and cladding around the core. The sleeve may include fiber-optic material. The fiber-optic material may be substantially polymer-free. An outer surface of the sleeve may be roughened to scatter the light out of the sleeve through the roughened surface. A method of forming an apparatus for scattering light may include: providing a sleeve having a first length, the sleeve having inner and outer surfaces; providing an optical fiber having a second length longer than the first length; passing the sleeve around the optical fiber or threading the optical fiber through the sleeve; and roughening at least a portion of the outer surface of the sleeve.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Applicant: NLIGHT, INC.
    Inventors: Manoj KANSKAR, Shuang LI, Eric MARTIN, Jay SMALL, Jiamin ZHANG
  • Publication number: 20200373736
    Abstract: A laser diode, comprising a transverse waveguide that is orthogonal to the lateral waveguide comprising an active layer between an n-type waveguide layer and a p-type waveguide layer, wherein the transverse waveguide is bounded by an n-type cladding layer on an n-side and p-type cladding layer on a p-side and a lateral waveguide bounded in a longitudinal direction at a first end by a high reflector (HR) coated facet and at a second end by a partial reflector (PR) coated facet, the lateral waveguide further comprising a buried higher order mode suppression layer (HOMSL) disposed beneath the p-cladding within the lateral waveguide or on one or both sides of the lateral waveguide or a combination thereof, wherein the HOMSL extends in a longitudinal direction from the HR facet a length less than the distance between the HR facet and the PR facet.
    Type: Application
    Filed: August 13, 2020
    Publication date: November 26, 2020
    Applicant: NLIGHT, INC.
    Inventors: Manoj KANSKAR, Zhigang CHEN, Nicolas BIEKERT
  • Patent number: 10833482
    Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 10, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
  • Patent number: 10833474
    Abstract: Laser diode submounts include a SiC substrate on which a thick conductive layer is supplied to use in mounting a laser diode. The thick conductive layer is typically gold or copper, and can be electrically coupled to a base laser that is used to define laser diode couplings.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 10, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Manoj Kanskar, Zhigang Chen
  • Patent number: 10777968
    Abstract: A laser diode vertical epitaxial structure, comprising a transverse waveguide comprising an active layer between an n-type semiconductor layer and a p-type semiconductor layer wherein the transverse waveguide is bounded by a lower index n-cladding layer on an n-side of the transverse waveguide and a lower index p-cladding layer on a p-side of the transverse waveguide, a lateral waveguide that is orthogonal to the transverse waveguide, wherein the lateral waveguide is bounded in a longitudinal direction at a first end by a facet coated with a high reflector (HR) coating and at a second end by a facet coated with a partial reflector (PR) coating and a higher order mode suppression layer (HOMSL) disposed adjacent to at least one lateral side of the lateral waveguide and that extends in a longitudinal direction.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: September 15, 2020
    Assignee: NLIGHT, INC.
    Inventors: Manoj Kanskar, Zhigang Chen
  • Patent number: 10763640
    Abstract: Apparatus include a conductive block including a base surface and a plurality of parallel stepped surfaces opposite the base surface and defining respective mounting surfaces situated to receive respective laser diodes having respective thermal paths defining a common thermal path distance from the mounting surfaces to the base surface, and a two-phase cooling unit including a coupling surface attached to the base surface of the conductive block and wherein the two-phase cooling unit is situated to conduct heat generated through the emission of laser beams from the laser diodes along the thermal paths.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: September 1, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Manoj Kanskar, Mark DeFranza
  • Patent number: 10658813
    Abstract: Apparatus comprise a semiconductor waveguide extending along a longitudinal axis and including a first waveguide section and a second waveguide section, wherein a lateral refractive index difference defining the semiconductor waveguide is larger for the first waveguide section than for the second waveguide section, and an output facet situated on the longitudinal axis of the semiconductor waveguide so as to emit a laser beam propagating in the semiconductor waveguide, wherein the first waveguide section is situated between the second waveguide section and the output facet and wherein the lateral refractive index difference suppresses emission of higher order transverse modes in the laser beam emitted by the output facet.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: May 19, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar
  • Publication number: 20190372309
    Abstract: Laser diodes are configured to suppress lasing of a first and higher order modes along a fast axis of an optical beam emitted by the laser diode. An optical cavity is defined by a p-side of the laser diode, an n-side of the laser diode, and an active region located between the p- and n-sides. The n-side has an n-waveguide layer forming at least a portion of a waveguide having a quantum well offset towards the p-side. According to some embodiments, double cladding layers out-couple higher order modes. According to other embodiments, double waveguides (e.g., symmetric and asymmetric) reduce gain applied to higher order modes.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 5, 2019
    Inventors: Zhigang Chen, Manoj Kanskar