Patents by Inventor Manu Seth

Manu Seth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250102613
    Abstract: In one embodiment, an asynchronous wireless system for localization of nodes comprises a first wireless node being configured to receive a first communication from a third wireless node having an unknown location, to determine time difference of arrival (TDoA) information of the reception of the first communication between each of the first and a second wireless node, to determine TDoA ranging including a relative or absolute position of the third wireless node using the time difference of arrival information, and to synchronize the first and second wireless nodes based on a second communication with the synchronization being decoupled in time from the first communication. In another embodiment, a computer implemented method comprises receiving, with first and second wireless anchor nodes, packets from a wireless arbitrary device and performing time difference of arrival ranging upon reception of the packets between each of the first and the second wireless anchor nodes.
    Type: Application
    Filed: November 12, 2024
    Publication date: March 27, 2025
    Inventors: Mark Bilstad, Tommi Ylamurto, Manu Seth
  • Publication number: 20250062093
    Abstract: Systems and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, an asynchronous system includes a first wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture including a first RF signal having a first packet. The system also includes a second wireless node having a wireless device with a transmitter and a receiver to enable bi-directional communications with the first wireless node in the wireless network architecture including a second RF signal with a second packet. The first wireless node determines a time of flight estimate for localization based on a time estimate of round trip time of the first and second packets and a time estimate that is based on channel sense information of the first and second wireless nodes.
    Type: Application
    Filed: August 29, 2024
    Publication date: February 20, 2025
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto, Vivek Subramanian
  • Patent number: 12174310
    Abstract: In one embodiment, an asynchronous wireless system for localization of nodes comprises a first wireless node being configured to receive a first communication from a third wireless node having an unknown location, to determine time difference of arrival (TDoA) information of the reception of the first communication between each of the first and a second wireless node, to determine TDoA ranging including a relative or absolute position of the third wireless node using the time difference of arrival information, and to synchronize the first and second wireless nodes based on a second communication with the synchronization being decoupled in time from the first communication. In another embodiment, a computer implemented method comprises receiving, with first and second wireless anchor nodes, packets from a wireless arbitrary device and performing time difference of arrival ranging upon reception of the packets between each of the first and the second wireless anchor nodes.
    Type: Grant
    Filed: January 17, 2024
    Date of Patent: December 24, 2024
    Assignee: ZaiNar, Inc.
    Inventors: Mark Bilstad, Tommi Ylamurto, Manu Seth
  • Patent number: 12108362
    Abstract: Systems and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, an asynchronous system includes a first wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture including a first RF signal having a first packet. The system also includes a second wireless node having a wireless device with a transmitter and a receiver to enable bi-directional communications with the first wireless node in the wireless network architecture including a second RF signal with a second packet. The first wireless node determines a time of flight estimate for localization based on a time estimate of round trip time of the first and second packets and a time estimate that is based on channel sense information of the first and second wireless nodes.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: October 1, 2024
    Assignee: ZaiNar, Inc
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto, Vivek Subramanian
  • Publication number: 20240159859
    Abstract: In one embodiment, an asynchronous wireless system for localization of nodes comprises a first wireless node being configured to receive a first communication from a third wireless node having an unknown location, to determine time difference of arrival (TDoA) information of the reception of the first communication between each of the first and a second wireless node, to determine TDoA ranging including a relative or absolute position of the third wireless node using the time difference of arrival information, and to synchronize the first and second wireless nodes based on a second communication with the synchronization being decoupled in time from the first communication. In another embodiment, a computer implemented method comprises receiving, with first and second wireless anchor nodes, packets from a wireless arbitrary device and performing time difference of arrival ranging upon reception of the packets between each of the first and the second wireless anchor nodes.
    Type: Application
    Filed: January 17, 2024
    Publication date: May 16, 2024
    Inventors: Mark Bilstad, Tommi Ylamurto, Manu Seth
  • Publication number: 20240163641
    Abstract: In one embodiment, an asynchronous wireless system for localization of nodes comprises a first wireless node being configured to receive a first communication from a third wireless node having an unknown location, to determine time difference of arrival (TDoA) information of the reception of the first communication between each of the first and a second wireless node, to determine TDoA ranging including a relative or absolute position of the third wireless node using the time difference of arrival information, and to synchronize the first and second wireless nodes based on a second communication with the synchronization being decoupled in time from the first communication. In another embodiment, a computer implemented method comprises receiving, with first and second wireless anchor nodes, packets from a wireless arbitrary device and performing time difference of arrival ranging upon reception of the packets between each of the first and the second wireless anchor nodes.
    Type: Application
    Filed: November 14, 2023
    Publication date: May 16, 2024
    Inventors: Mark Bilstad, Tommi Ylamurto, Manu Seth
  • Patent number: 11906649
    Abstract: In one embodiment, an asynchronous wireless system for localization of nodes comprises a first wireless node being configured to receive a first communication from a third wireless node having an unknown location, to determine time difference of arrival (TDoA) information of the reception of the first communication between each of the first and a second wireless node, to determine TDoA ranging including a relative or absolute position of the third wireless node using the time difference of arrival information, and to synchronize the first and second wireless nodes based on a second communication with the synchronization being decoupled in time from the first communication. In another embodiment, a computer implemented method comprises receiving, with first and second wireless anchor nodes, packets from a wireless arbitrary device and performing time difference of arrival ranging upon reception of the packets between each of the first and the second wireless anchor nodes.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: February 20, 2024
    Assignee: ZaiNar, Inc.
    Inventors: Mark Bilstad, Tommi Ylamurto, Manu Seth
  • Patent number: 11856484
    Abstract: In one embodiment, an asynchronous wireless system for localization of nodes comprises a first wireless node being configured to receive a first communication from a third wireless node having an unknown location, to determine time difference of arrival (TDoA) information of the reception of the first communication between each of the first and a second wireless node, to determine TDoA ranging including a relative or absolute position of the third wireless node using the time difference of arrival information, and to synchronize the first and second wireless nodes based on a second communication with the synchronization being decoupled in time from the first communication. In another embodiment, a computer implemented method comprises receiving, with first and second wireless anchor nodes, packets from a wireless arbitrary device and performing time difference of arrival ranging upon reception of the packets between each of the first and the second wireless anchor nodes.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: December 26, 2023
    Assignee: ZaiNar, Inc.
    Inventors: Mark Bilstad, Tommi Ylamurto, Manu Seth
  • Publication number: 20230362876
    Abstract: Systems and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, an asynchronous system includes a first wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture including a first RF signal having a first packet. The system also includes a second wireless node having a wireless device with a transmitter and a receiver to enable bi-directional communications with the first wireless node in the wireless network architecture including a second RF signal with a second packet. The first wireless node determines a time of flight estimate for localization based on a time estimate of round trip time of the first and second packets and a time estimate that is based on channel sense information of the first and second wireless nodes.
    Type: Application
    Filed: May 8, 2023
    Publication date: November 9, 2023
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto, Vivek Subramanian
  • Patent number: 11683779
    Abstract: Systems and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, an asynchronous system includes a first wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture including a first RF signal having a first packet. The system also includes a second wireless node having a wireless device with a transmitter and a receiver to enable bi-directional communications with the first wireless node in the wireless network architecture including a second RF signal with a second packet. The first wireless node determines a time of flight estimate for localization based on a time estimate of round trip time of the first and second packets and a time estimate that is based on channel sense information of the first and second wireless nodes.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: June 20, 2023
    Assignee: ZaiNar, Inc.
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto, Vivek Subramanian
  • Publication number: 20230009717
    Abstract: In one embodiment, an asynchronous wireless system for localization of nodes comprises a first wireless node being configured to receive a first communication from a third wireless node having an unknown location, to determine time difference of arrival (TDoA) information of the reception of the first communication between each of the first and a second wireless node, to determine TDoA ranging including a relative or absolute position of the third wireless node using the time difference of arrival information, and to synchronize the first and second wireless nodes based on a second communication with the synchronization being decoupled in time from the first communication. In another embodiment, a computer implemented method comprises receiving, with first and second wireless anchor nodes, packets from a wireless arbitrary device and performing time difference of arrival ranging upon reception of the packets between each of the first and the second wireless anchor nodes.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Inventors: Mark Bilstad, Tommi Ylamurto, Manu Seth
  • Publication number: 20230011851
    Abstract: In one embodiment, an asynchronous wireless system for localization of nodes comprises a first wireless node being configured to receive a first communication from a third wireless node having an unknown location, to determine time difference of arrival (TDoA) information of the reception of the first communication between each of the first and a second wireless node, to determine TDoA ranging including a relative or absolute position of the third wireless node using the time difference of arrival information, and to synchronize the first and second wireless nodes based on a second communication with the synchronization being decoupled in time from the first communication. In another embodiment, a computer implemented method comprises receiving, with first and second wireless anchor nodes, packets from a wireless arbitrary device and performing time difference of arrival ranging upon reception of the packets between each of the first and the second wireless anchor nodes.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Inventors: Mark Bilstad, Tommi Ylamurto, Manu Seth
  • Patent number: 11442137
    Abstract: Systems, apparatuses, and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, a system includes a first wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture including a first RF signal having a first packet. A second wireless node having a wireless device with a transmitter and a receiver enables bi-directional communications with the first wireless node in the wireless network architecture including a second RF signal with a second packet. The one or more processing units of the first wireless node are configured to execute instructions to determine a round trip time estimate of the first and second packets, to determine channel state information (CSI) of the first and second wireless nodes, and to calibrate hardware to determine hardware delays of the first and second wireless nodes.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: September 13, 2022
    Assignee: LOCIX, INC.
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto
  • Patent number: 11327147
    Abstract: Systems, apparatuses, and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, a system for localization of nodes in a wireless network architecture, comprises a wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture; and a plurality of wireless sensor nodes having a wireless device with a transmitter and a receiver to enable bi-directional communications with the wireless node in the wireless network architecture. One or more processing units of the wireless node are configured to execute instructions to determine ranging data including a set of possible ranges between the wireless node and the plurality of wireless sensor nodes having unknown locations, and to associate a set of relative locations within an environment of the wireless network architecture with the wireless node and the plurality of wireless sensor nodes.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 10, 2022
    Assignee: LOCIX, INC.
    Inventors: Tommi Ylamurto, Manu Seth, Lingkai Kong, Vivek Subramanian
  • Patent number: 11228999
    Abstract: Systems and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, a method comprises initiating calibration, with processing logic, of at least one component of RF circuitry having a transmit chain and a receive chain of a first wireless node by generating a first loopback calibration signal and passing this first loopback calibration signal through the transmit chain and the receive chain of the first wireless node. The method further includes measuring a first transmit time delay for passing the first loopback calibration signal through the transmit chain and also measuring a first receive time delay for passing the first loopback calibration signal through the receive chain of the first wireless node.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: January 18, 2022
    Assignee: LOCIX, INC.
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto, Vivek Subramanian
  • Patent number: 10802104
    Abstract: Systems, apparatuses, and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, a system for localization of nodes in a wireless network architecture comprises a plurality of wireless anchor nodes each having a known location and a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture and a wireless node having a wireless device with a transmitter and a receiver to enable bi-directional communications with the plurality of wireless anchor nodes in the wireless network architecture. One or more processing units of at least one of the plurality of wireless anchor nodes are configured to execute instructions to determine a set of possible ranges between each anchor node and the wireless node having an unknown location and to perform a triangulation algorithm that utilizes a maximum likelihood estimation (MLE) of ranging measurements from anchor nodes.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: October 13, 2020
    Assignee: Locix, Inc.
    Inventors: Tommi Ylamurto, Manu Seth, Lingkai Kong, Sourav Raj Dey
  • Publication number: 20200305113
    Abstract: Systems and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, an asynchronous system includes a first wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture including a first RF signal having a first packet. The system also includes a second wireless node having a wireless device with a transmitter and a receiver to enable bi-directional communications with the first wireless node in the wireless network architecture including a second RF signal with a second packet. The first wireless node determines a time of flight estimate for localization based on a time estimate of round trip time of the first and second packets and a time estimate that is based on channel sense information of the first and second wireless nodes.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Applicant: Locix Inc.
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto, Vivek Subramanian
  • Patent number: 10757675
    Abstract: Systems and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, an asynchronous system includes a first wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture including a first RF signal having a first packet. The system also includes a second wireless node having a wireless device with a transmitter and a receiver to enable bi-directional communications with the first wireless node in the wireless network architecture including a second RF signal with a second packet. The first wireless node determines a time of flight estimate for localization based on a time estimate of round trip time of the first and second packets and a time estimate that is based on channel sense information of the first and second wireless nodes.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 25, 2020
    Assignee: Locix, Inc.
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto, Vivek Subramanian
  • Publication number: 20200209341
    Abstract: Systems, apparatuses, and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, a system for localization of nodes in a wireless network architecture, comprises a wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture; and a plurality of wireless sensor nodes having a wireless device with a transmitter and a receiver to enable bi-directional communications with the wireless node in the wireless network architecture. One or more processing units of the wireless node are configured to execute instructions to determine ranging data including a set of possible ranges between the wireless node and the plurality of wireless sensor nodes having unknown locations, and to associate a set of relative locations within an environment of the wireless network architecture with the wireless node and the plurality of wireless sensor nodes.
    Type: Application
    Filed: February 22, 2019
    Publication date: July 2, 2020
    Applicant: Locix, Inc.
    Inventors: Tommi Ylamurto, Manu Seth, Lingkai Kong, Vivek Subramanian
  • Publication number: 20200209372
    Abstract: Systems, apparatuses, and methods for determining locations of wireless nodes in a network architecture are disclosed herein. In one example, a system includes a first wireless node having a wireless device with one or more processing units and RF circuitry for transmitting and receiving communications in the wireless network architecture including a first RF signal having a first packet. A second wireless node having a wireless device with a transmitter and a receiver enables bi-directional communications with the first wireless node in the wireless network architecture including a second RF signal with a second packet. The one or more processing units of the first wireless node are configured to execute instructions to determine a round trip time estimate of the first and second packets, to determine channel state information (CSI) of the first and second wireless nodes, and to calibrate hardware to determine hardware delays of the first and second wireless nodes.
    Type: Application
    Filed: February 22, 2019
    Publication date: July 2, 2020
    Applicant: Locix, Inc.
    Inventors: Manu Seth, Lingkai Kong, Tommi Ylamurto