Patents by Inventor Manu Seth

Manu Seth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8860514
    Abstract: A fractional-N divider supplies a divided clock signal. An adjusted divided clock signal is generated in a digital-to-time converter circuit having a delay linearly proportional to digital quantization errors of the fractional-N divider. The adjusted divided clock signal is generated based on first and second capacitors charging to a predetermined level. The charging of the first and second capacitors is interleaved in alternate periods of the divided clock. The charging of each capacitor with a current corresponding to respective digital quantization errors is interleaved with charging with a fixed current. A first edge of a first pulse of the adjusted divided clock signal is generated in response to the first capacitor charging to a predetermined voltage and a first edge of a next pulse of the adjusted divided clock signal is generated in response to the second capacitor charging to the predetermined voltage.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: October 14, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Colin Weltin-Wu, Yunteng Huang, Manu Seth
  • Publication number: 20140176251
    Abstract: A technique for tracking changes in bias conditions of a microelectromechanical system (MEMS) device includes applying an electrode bias signal to an electrode of the MEMS device. The technique includes applying a mass bias signal to a mass of the MEMS device suspended from a substrate of the MEMS device. The technique includes generating the mass bias signal based on a target mass-to-electrode bias signal level and a signal level of the electrode bias signal.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: Silicon Laboratories Inc.
    Inventors: Manu Seth, Aaron Caffee
  • Publication number: 20140176201
    Abstract: A fractional-N divider supplies a divided clock signal. An adjusted divided clock signal is generated in a digital-to-time converter circuit having a delay linearly proportional to digital quantization errors of the fractional-N divider. The adjusted divided clock signal is generated based on first and second capacitors charging to a predetermined level. The charging of the first and second capacitors is interleaved in alternate periods of the divided clock. The charging of each capacitor with a current corresponding to respective digital quantization errors is interleaved with charging with a fixed current. A first edge of a first pulse of the adjusted divided clock signal is generated in response to the first capacitor charging to a predetermined voltage and a first edge of a next pulse of the adjusted divided clock signal is generated in response to the second capacitor charging to the predetermined voltage.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: SILICON LABORATORIES INC.
    Inventors: Colin Weltin-Wu, Yunteng Huang, Manu Seth
  • Patent number: 8686806
    Abstract: An apparatus and a method for compensating for a mismatch in temperature coefficients of two oscillator frequencies to match a desired frequency ratio between the two oscillator frequencies over a temperature range. In one embodiment of a temperature sensor, first and second oscillators of different temperature characteristics are coupled to a differential frequency discriminator (DFD) circuit. The DFD circuit compensates for the different characteristics in order to match a frequency difference between the first and second frequencies over a temperature range.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: April 1, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Emmanuel P. Quevy, Manu Seth
  • Patent number: 8471641
    Abstract: A MEMS oscillator includes a resonator body and primary and secondary drive electrodes to electrostatically drive the resonator body. Primary and secondary sense electrodes sense motion of the resonator body. The primary and secondary drive and sense electrodes are configured to be used together during start-up of the MEMS oscillator. The secondary drive electrode and secondary sense electrode are disabled after start-up, while the primary drive and sense electrodes remain enabled to maintain oscillation.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 25, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Emmanuel P. Quevy, Manu Seth, Mehrnaz Motiee
  • Publication number: 20130002364
    Abstract: A MEMS oscillator includes a resonator body and primary and secondary drive electrodes to electrostatically drive the resonator body. Primary and secondary sense electrodes sense motion of the resonator body. The primary and secondary drive and sense electrodes are configured to be used together during start-up of the MEMS oscillator. The secondary drive electrode and secondary sense electrode are disabled after start-up, while the primary drive and sense electrodes remain enabled to maintain oscillation.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Inventors: Emmanuel P. Quevy, Manu Seth, Mehrnaz Motiee
  • Patent number: 8138846
    Abstract: A frequency-control circuit, which is configured to receive a first signal having a first untuned frequency from a first oscillator, and to alter one or more pulses of the first signal to tune an output frequency of an output clock signal to have an average frequency at the desired target frequency. In some embodiments, the frequency-control circuit receives a signal from a single oscillator to generate a calibrated, precise, and temperature-stable clock.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 20, 2012
    Assignee: Silicon Laboratories Inc.
    Inventors: Manu Seth, David Brubaker, Andrew McCraith, Richard Steven Miller, Mir Bahram Ghaderi
  • Publication number: 20110210797
    Abstract: An apparatus and a method for compensating for a mismatch in temperature coefficients of two oscillator frequencies to match a desired frequency ratio between the two oscillator frequencies over a temperature range. In one embodiment of a temperature sensor, first and second oscillators of different temperature characteristics are coupled to a differential frequency discriminator (DFD) circuit. The DFD circuit compensates for the different characteristics in order to match a frequency difference between the first and second frequencies over a temperature range.
    Type: Application
    Filed: May 3, 2011
    Publication date: September 1, 2011
    Inventors: Emmanuel P. Quevy, Manu Seth
  • Patent number: 7982550
    Abstract: An apparatus and a method for compensating for a mismatch in temperature coefficients of two oscillator frequencies to match a desired frequency ratio between the two oscillator frequencies over a temperature range. In one embodiment of a temperature sensor, first and second oscillators of different temperature characteristics are coupled to a differential frequency discriminator (DFD) circuit. The DFD circuit compensates for the different characteristics in order to match a frequency difference between the first and second frequencies over a temperature range.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: July 19, 2011
    Assignee: Silicon Laboratories
    Inventors: Emmanuel P. Quevy, Manu Seth
  • Patent number: 7830216
    Abstract: A frequency-control circuit, which is configured to receive a first signal having a first untuned frequency from a first oscillator, and to alter one or more pulses of the first signal to tune an output frequency of an output clock signal to have an average frequency at the desired target frequency. In some embodiments, the frequency-control circuit receives a signal from a single oscillator to generate a calibrated, precise, and temperature-stable clock.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: November 9, 2010
    Assignee: Silicon Labs SC, Inc.
    Inventors: Manu Seth, David Brubaker, Andrew McCraith, Richard Steven Miller, Mir Bahram Ghaderi
  • Publication number: 20100277246
    Abstract: A frequency-control circuit, which is configured to receive a first signal having a first untuned frequency from a first oscillator, and to alter one or more pulses of the first signal to tune an output frequency of an output clock signal to have an average frequency at the desired target frequency. In some embodiments, the frequency-control circuit receives a signal from a single oscillator to generate a calibrated, precise, and temperature-stable clock.
    Type: Application
    Filed: June 30, 2010
    Publication date: November 4, 2010
    Inventors: Manu Seth, David Brubaker, Andrew McCraith, Richard Steven Miller, Mir Bahram Ghaderi
  • Patent number: 7764131
    Abstract: A frequency-control circuit, which is configured to receive a first signal having a first untuned frequency from a first oscillator, and to alter one or more pulses of the first signal to tune an output frequency of an output clock signal to have an average frequency at the desired target frequency. In some embodiments, the two oscillators of intentionally different frequencies are periodically switched at a duty factor, which is dependent on an absolute temperature, to generate a calibrated, precise, and temperature-stable clock.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: July 27, 2010
    Assignee: Silicon Labs SC, Inc.
    Inventors: Manu Seth, David Brubaker, Andrew McCraith, Richard Steven Miller, Mir Bahram Ghaderi