Patents by Inventor Manuj Dhingra

Manuj Dhingra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240051674
    Abstract: A method of controlling a multi-engine aircraft includes receiving input for commanded thrust and modifying the commanded thrust using a model of an incumbent powerplant to generate a modified commanded thrust for matching aircraft performance with a new powerplant to the aircraft performance with the incumbent powerplant. The method includes applying the modified commanded thrust to the new powerplant.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 15, 2024
    Inventors: Leonid GUERCHKOVITCH, Aaron J. KAUFMAN, Boris KARPMAN, Manuj DHINGRA
  • Publication number: 20240002065
    Abstract: A method of controlling a hybrid-electric aircraft powerplant includes running a first control loop for command of a thermal engine based on error between total response commanded for a hybrid-electric powerplant and total response from the hybrid-electric powerplant. A second control loop runs in parallel with the first control loop for commanding the thermal engine based on error between maximum thermal engine output and total response commanded. A third control loop runs in parallel with the first and second control loops for commanding engine/propeller speed, wherein the third control loop outputs a speed control enable or disable status. A fourth control loop runs in parallel with the first, second, and third control loops for commanding the electric motor with non-zero demand when the second control loop is above control to add response from the electric motor to response from the thermal engine to achieve the response commanded.
    Type: Application
    Filed: September 19, 2023
    Publication date: January 4, 2024
    Inventors: Leonid GUERCHKOVITCH, Manuj DHINGRA, Boris KARPMAN, Aaron J. KAUFMAN
  • Patent number: 11827372
    Abstract: A method of controlling a multi-engine aircraft includes receiving input for commanded thrust and modifying the commanded thrust using a model of an incumbent powerplant to generate a modified commanded thrust for matching aircraft performance with a new powerplant to the aircraft performance with the incumbent powerplant. The method includes applying the modified commanded thrust to the new powerplant.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: November 28, 2023
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Leonid Guerchkovitch, Aaron J. Kaufman, Boris Karpman, Manuj Dhingra
  • Patent number: 11794917
    Abstract: A method of controlling a hybrid-electric aircraft powerplant includes running a first control loop for command of a thermal engine based on error between total response commanded for a hybrid-electric powerplant and total response from the hybrid-electric powerplant. A second control loop runs in parallel with the first control loop for commanding the thermal engine based on error between maximum thermal engine output and total response commanded. A third control loop runs in parallel with the first and second control loops for commanding engine/propeller speed, wherein the third control loop outputs a speed control enable or disable status. A fourth control loop runs in parallel with the first, second, and third control loops for commanding the electric motor with non-zero demand when the second control loop is above control to add response from the electric motor to response from the thermal engine to achieve the response commanded.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: October 24, 2023
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Leonid Guerchkovitch, Manuj Dhingra, Boris Karpman, Aaron J. Kaufman
  • Publication number: 20230219693
    Abstract: An engine system for an aircraft includes a gas turbine engine and a control system. The control system is configured to motor the gas turbine engine, absent fuel burn, during a taxi mode of the aircraft. The control system is further configured to accelerate a motoring speed of the gas turbine engine, absent fuel burn, above an idle speed of the gas turbine engine to provide propulsion during the taxi mode. The control system is configured to decrease the motoring speed of the gas turbine engine, absent fuel burn, based on a change in a starting mode of the gas turbine engine or the aircraft reaching a targeted new position.
    Type: Application
    Filed: January 11, 2023
    Publication date: July 13, 2023
    Inventors: Stephen A. Witalis, Ramesh Rajagopalan, Manuj Dhingra
  • Publication number: 20230160347
    Abstract: A hybrid electric propulsion system includes a gas turbine engine having at least one compressor section and at least one turbine section operably coupled to a shaft. The hybrid electric propulsion system includes an electric motor configured to augment rotational power of the shaft of the gas turbine engine. A controller is operable to determine hybrid electric propulsion system parameters based on a composite system model and sensor data, determine a prediction based on the hybrid electric propulsion system parameters and the composite system model, determine a model predictive control optimization for a plurality of hybrid electric system control effectors based on the prediction using a plurality of reduced-order partitions of the composite system model, and actuate the hybrid electric system control effectors based on the model predictive control optimization.
    Type: Application
    Filed: January 12, 2023
    Publication date: May 25, 2023
    Inventors: Timothy J. Crowley, Sorin Bengea, Manuj Dhingra, David Gelwan, Kevin Hendricks, Joshua Adams, Martin Richard Amari, Richard P. Meisner, David Lei Ma
  • Patent number: 11555455
    Abstract: A hybrid electric propulsion system includes a gas turbine engine having at least one compressor section and at least one turbine section operably coupled to a shaft. The hybrid electric propulsion system includes an electric motor configured to augment rotational power of the shaft of the gas turbine engine. A controller is operable to determine an estimate of hybrid electric propulsion system parameters based on a composite system model and sensor data, determine a model predictive control state and a prediction based on the hybrid electric propulsion system parameters and the composite system model, determine a model predictive control optimization for a plurality of hybrid electric system control effectors based on the model predictive control state and the prediction using a plurality of reduced-order partitions of the composite system model, and actuate the hybrid electric system control effectors based on the model predictive control optimization.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: January 17, 2023
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Timothy J. Crowley, Sorin Bengea, Manuj Dhingra, David Gelwan, Kevin Hendricks, Joshua Adams, Martin Richard Amari, Richard P. Meisner, David Lei Ma
  • Patent number: 11473510
    Abstract: A method of operating a gas turbine engine includes commanding an acceleration of the gas turbine engine and moving a variable pitch high pressure compressor vane toward an open position thereby reducing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal. An active clearance control system of a gas turbine engine includes an engine control system configured to command an acceleration of the gas turbine engine and move a variable pitch high pressure compressor vane toward an open position thereby slowing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal located radially outboard of the high pressure turbine rotor.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: October 18, 2022
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Joseph Kehoe, Richard P. Meisner, Manuj Dhingra, Patrick D. Couture, Matthew R. Feulner, Brenda J. Lisitano, Christopher L. Ho
  • Publication number: 20210354843
    Abstract: A method of controlling a hybrid-electric aircraft powerplant includes running a first control loop for command of a thermal engine based on error between total response commanded for a hybrid-electric powerplant and total response from the hybrid-electric powerplant. A second control loop runs in parallel with the first control loop for commanding the thermal engine based on error between maximum thermal engine output and total response commanded. A third control loop runs in parallel with the first and second control loops for commanding engine/propeller speed, wherein the third control loop outputs a speed control enable or disable status. A fourth control loop runs in parallel with the first, second, and third control loops for commanding the electric motor with non-zero demand when the second control loop is above control to add response from the electric motor to response from the thermal engine to achieve the response commanded.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 18, 2021
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Leonid Guerchkovitch, Manuj Dhingra, Boris Karpman, Aaron J. Kaufman
  • Publication number: 20210354842
    Abstract: A method of controlling a multi-engine aircraft includes receiving input for commanded thrust and modifying the commanded thrust using a model of an incumbent powerplant to generate a modified commanded thrust for matching aircraft performance with a new powerplant to the aircraft performance with the incumbent powerplant. The method includes applying the modified commanded thrust to the new powerplant.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 18, 2021
    Applicant: Pratt & Whitney Canada Corp.
    Inventors: Leonid Guerchkovitch, Aaron J. Kaufman, Boris Karpman, Manuj Dhingra
  • Publication number: 20200347787
    Abstract: A hybrid electric propulsion system includes a gas turbine engine having at least one compressor section and at least one turbine section operably coupled to a shaft. The hybrid electric propulsion system includes an electric motor configured to augment rotational power of the shaft of the gas turbine engine. A controller is operable to determine an estimate of hybrid electric propulsion system parameters based on a composite system model and sensor data, determine a model predictive control state and a prediction based on the hybrid electric propulsion system parameters and the composite system model, determine a model predictive control optimization for a plurality of hybrid electric system control effectors based on the model predictive control state and the prediction using a plurality of reduced-order partitions of the composite system model, and actuate the hybrid electric system control effectors based on the model predictive control optimization.
    Type: Application
    Filed: February 6, 2020
    Publication date: November 5, 2020
    Inventors: Timothy J. Crowley, Sorin Bengea, Manuj Dhingra, David Gelwan, Kevin Hendricks, Joshua Adams, Martin Richard Amari, Richard P. Meisner, David Lei Ma
  • Publication number: 20200332726
    Abstract: A method of operating a gas turbine engine includes commanding an acceleration of the gas turbine engine and moving a variable pitch high pressure compressor vane toward an open position thereby reducing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal. An active clearance control system of a gas turbine engine includes an engine control system configured to command an acceleration of the gas turbine engine and move a variable pitch high pressure compressor vane toward an open position thereby slowing an acceleration rate of a high pressure turbine rotor thereby reducing a change in a clearance gap between the high pressure turbine rotor and a blade outer airseal located radially outboard of the high pressure turbine rotor.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 22, 2020
    Inventors: Joseph Kehoe, Richard P. Meisner, Manuj Dhingra, Patrick D. Couture, Matthew R. Feulner, Brenda J. Lisitano, Christopher L. Ho
  • Patent number: 10767506
    Abstract: A system for controlling a plurality of hydraulic effectors operably connected to an engine to control engine parameters. The system also includes a plurality of sensors operably connected to measure a state or parameter of each effector, a pump configured to supply fluid to the plurality of effectors, and a controller operably connected to the plurality of sensors, the plurality of effectors, and the pump. The controller executes a method for an adaptive model-based control for controlling each effector, The method includes receiving a request indicative of a desired state for each effector, receiving a weighting associated each request, obtaining information about a current state of each effector, and updating an adaptive model based control (MBC) based upon the information. The method also includes generating a control command for an effector based upon the adaptive MBC and commanding the effector based upon the control command.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: September 8, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Martin Richard Amari, Joshua Adams, Manuj Dhingra, Timothy J. Crowley, Andrew B. Thompson, Timothy J. Gaudet, Richard P. Meisner
  • Patent number: 10655494
    Abstract: A system for controlling a plurality of electromechanical effectors operably connected to an engine to control engine parameters. The system also includes a plurality of sensors operably connected to measure a state or parameter of each effector, a power supply configured to supply power to the plurality of effectors, and a controller operably connected to the plurality of sensors, the plurality of effectors, and the power supply. The controller executes a method for an adaptive model-based control for controlling each effector, The method includes receiving a request indicative of a desired state for each effector, receiving a weighting associated each request, obtaining information about a current state of each effector, and updating an adaptive model based control (MBC) based upon the information. The method also includes generating a control command for an effector based upon the adaptive MBC and commanding the effector based upon the control command.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: May 19, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Martin Richard Amari, Joshua Adams, Manuj Dhingra, Timothy J. Crowley, Coy Bruce Wood
  • Publication number: 20200123926
    Abstract: A system for controlling a plurality of electromechanical effectors operably connected to an engine to control engine parameters. The system also includes a plurality of sensors operably connected to measure a state or parameter of each effector, a power supply configured to supply power to the plurality of effectors, and a controller operably connected to the plurality of sensors, the plurality of effectors, and the power supply. The controller executes a method for an adaptive model-based control for controlling each effector, The method includes receiving a request indicative of a desired state for each effector, receiving a weighting associated each request, obtaining information about a current state of each effector, and updating an adaptive model based control (MBC) based upon the information. The method also includes generating a control command for an effector based upon the adaptive MBC and commanding the effector based upon the control command.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 23, 2020
    Inventors: Martin Richard Amari, Joshua Adams, Manuj Dhingra, Timothy J. Crowley, Coy Bruce Wood
  • Publication number: 20200123927
    Abstract: A system for controlling a plurality of hydraulic effectors operably connected to an engine to control engine parameters. The system also includes a plurality of sensors operably connected to measure a state or parameter of each effector, a pump configured to supply fluid to the plurality of effectors, and a controller operably connected to the plurality of sensors, the plurality of effectors, and the pump. The controller executes a method for an adaptive model-based control for controlling each effector, The method includes receiving a request indicative of a desired state for each effector, receiving a weighting associated each request, obtaining information about a current state of each effector, and updating an adaptive model based control (MBC) based upon the information. The method also includes generating a control command for an effector based upon the adaptive MBC and commanding the effector based upon the control command.
    Type: Application
    Filed: October 17, 2018
    Publication date: April 23, 2020
    Inventors: Martin Richard Amari, Joshua Adams, Manuj Dhingra, Timothy J. Crowley, Andrew B. Thompson, Timothy J. Gaudet, Richard P. Meisner
  • Patent number: 10539078
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor configured to generate a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on a model operating mode. The model processor may further include an estimate state module configured to determine an estimated state of the model based on at least one of a prior state, current state derivatives, solver state errors, and synthesized parameters, the estimate state module using online linearization and gain calculation to determine estimator gain for determining the estimated state of the model.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: January 21, 2020
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Boris Karpman, Richard P. Meisner, Manuj Dhingra
  • Publication number: 20180245517
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor configured to generate a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on a model operating mode. The model processor may further include an estimate state module configured to determine an estimated state of the model based on at least one of a prior state, current state derivatives, solver state errors, and synthesized parameters, the estimate state module using online linearization and gain calculation to determine estimator gain for determining the estimated state of the model.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 30, 2018
    Inventors: Boris Karpman, Richard P. Meisner, Manuj Dhingra
  • Patent number: 9915206
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode. The model processor may further include an estimate state module for determining an estimated state of the model based on a prior state model output and the current state model of the open loop model the estimate state module using online linearization and gain calculation to determine estimator gain for determining the estimated state of the model.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 13, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Boris Karpman, Richard P. Meisner, Manuj Dhingra
  • Publication number: 20150369136
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode. The model processor may further include an estimate state module for determining an estimated state of the model based on a prior state model output and the current state model of the open loop model the estimate state module using online linearization and gain calculation to determine estimator gain for determining the estimated state of the model.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 24, 2015
    Inventors: Boris Karpman, Richard P. Meisner, Manuj Dhingra