Patents by Inventor Mao Lin

Mao Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934027
    Abstract: An optical system affixed to an electronic apparatus is provided, including a first optical module, a second optical module, and a third optical module. The first optical module is configured to adjust the moving direction of a first light from a first moving direction to a second moving direction, wherein the first moving direction is not parallel to the second moving direction. The second optical module is configured to receive the first light moving in the second moving direction. The first light reaches the third optical module via the first optical module and the second optical module in sequence. The third optical module includes a first photoelectric converter configured to transform the first light into a first image signal.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: March 19, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Chih-Wei Weng, Chia-Che Wu, Chien-Yu Kao, Hsiao-Hsin Hu, He-Ling Chang, Chao-Hsi Wang, Chen-Hsien Fan, Che-Wei Chang, Mao-Gen Jian, Sung-Mao Tsai, Wei-Jhe Shen, Yung-Ping Yang, Sin-Hong Lin, Tzu-Yu Chang, Sin-Jhong Song, Shang-Yu Hsu, Meng-Ting Lin, Shih-Wei Hung, Yu-Huai Liao, Mao-Kuo Hsu, Hsueh-Ju Lu, Ching-Chieh Huang, Chih-Wen Chiang, Yu-Chiao Lo, Ying-Jen Wang, Shu-Shan Chen, Che-Hsiang Chiu
  • Publication number: 20240088124
    Abstract: A semiconductor structure, comprising a redistribution layer (RDL) including a dielectric layer and a conductive trace within the dielectric layer; a first conductive member disposed over the RDL and electrically connected with the conductive trace; a second conductive member disposed over the RDL and electrically connected with the conductive trace; a first die disposed over the RDL; a second die disposed over the first die, the first conductive member and the second conductive member; and a connector disposed between the second die and the second conductive member to electrically connect the second die with the conductive trace, wherein the first conductive member is electrically isolated from the second die.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 14, 2024
    Inventors: HSIANG-TAI LU, SHUO-MAO CHEN, MILL-JER WANG, FENG-CHENG HSU, CHAO-HSIANG YANG, SHIN-PUU JENG, CHENG-YI HONG, CHIH-HSIEN LIN, DAI-JANG CHEN, CHEN-HUA LIN
  • Publication number: 20240086331
    Abstract: Systems, apparatus and methods are provided for determining whether data accessed by the command in a storage system is hot or cold. An apparatus may include a first interface to be coupled to a host and a storage controller configured to: receive a command that contains an address in a data storage system; generate a set of hash addresses for the address; for each hash address of the set of hash addresses: obtain a stored hotness score associated with the hash address, update the stored hotness score to generate an updated hotness score associated with the hash address, and determine that the updated hotness score is above a hotness threshold; and determine that the address is hot.
    Type: Application
    Filed: September 12, 2022
    Publication date: March 14, 2024
    Inventors: Yan-Ruey Hsu, Yuan-Mao Chang, Wan-Ru Lin
  • Patent number: 11927799
    Abstract: A data transmission system is disclosed. The data transmission system includes at least one signal processing device, at least one conversion device, at least one antenna device, and at least one flexible printed circuit board. The at least one signal processing device is configured to generate or receive at least one data. The at least one conversion device is configured to transform between the at least one data and an optical signal. The at least one antenna device is configured to obtain the at least one data according to the optical signal, and configured to receive or transmit the at least one data wirelessly. The at least one flexible printed circuit board includes at least one conductive layer and at least one optical waveguide layer. The at least one optical waveguide layer is configured to transmit the optical signal.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: March 12, 2024
    Inventors: Po-Kuan Shen, Chun-Chiang Yen, Chiu-Lin Yu, Kai-Lun Han, Jenq-Yang Chang, Mao-Jen Wu, Chao-Chieh Hsu
  • Patent number: 11915992
    Abstract: A method for forming a package structure is provided, including forming an interconnect structure over a carrier substrate and forming a semiconductor die over a first side of the interconnect structure. A removable film is formed over the semiconductor die. The method includes forming a first stacked die package structure over the first side of the interconnect structure. A top surface of the removable film is higher than a top surface of the first stacked die package structure. The method includes forming a package layer, removing a portion of the package layer to expose a portion of the removable film, removing the removable film to form a recess, forming a lid structure over the semiconductor die and the first stacked die package structure. The lid structure has a main portion and a protruding portion disposed in the recess and extending from the main portion.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shin-Puu Jeng, Po-Yao Lin, Feng-Cheng Hsu, Shuo-Mao Chen, Chin-Hua Wang
  • Patent number: 11915937
    Abstract: A method includes forming a plurality of nanostructures over a substrate; etching the plurality of nanostructures to form recesses; forming source/drain regions in the recesses; removing first nanostructures of the plurality of nanostructures leaving second nanostructures of the plurality of nanostructures; depositing a gate dielectric over and around the second nanostructures; depositing a protective material over the gate dielectric; performing a fluorine treatment on the protective material; removing the protective material; depositing a first conductive material over the gate dielectric; and depositing a second conductive material over the first conductive material.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Mao-Lin Huang, Lung-Kun Chu, Huang-Lin Chao, Chi On Chui
  • Patent number: 11901361
    Abstract: A semiconductor structure includes a first FET device, a second FET device disposed, and an isolation separating the first FET device and the second FET device. The first FET device includes a fin structure, a first work function metal layer disposed over the fin structure, and a high-k gate dielectric layer between the first work function metal layer and the fin structure. The second FET device includes a plurality of nanosheets separated from each other, a second work function metal layer surrounding each of the nanosheets, and the high-k gate dielectric layer between the second work function metal layer and each of the nanosheets. A portion of the high-k gate dielectric layer is directly over the isolation.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jia-Ni Yu, Kuo-Cheng Chiang, Lung-Kun Chu, Chung-Wei Hsu, Chih-Hao Wang, Mao-Lin Huang
  • Publication number: 20240049257
    Abstract: The embodiments of the disclosure provide a method of UE receiving MBS data, UE, and a method of a cell providing an MBS data. The method includes: receiving a multicast MBS configuration, wherein the multicast MBS configuration is associated with an MBS provided by a first cell; and in response to determining that the UE in an unconnected state camping on the first cell, receiving, from the first cell, the MBS data of the MBS provided by the first cell based on the multicast MBS configuration.
    Type: Application
    Filed: June 30, 2023
    Publication date: February 8, 2024
    Applicant: Acer Incorporated
    Inventor: Jung-Mao Lin
  • Publication number: 20240047581
    Abstract: A semiconductor structure includes a semiconductor substrate, a gate electrode, a first spacer, and a first contact etch stop layer (CESL). The semiconductor substrate includes a fin structure. The gate electrode is over the fin structure. The first spacer is over the fin structure and on a lateral side of the gate electrode, wherein a top surface of the first spacer is inclined towards the gate electrode. The first CESL is over the fin structure and contacting the first spacer, wherein an angle between the top surface of the first spacer and a sidewall of the first CESL is less than about 140°.
    Type: Application
    Filed: August 2, 2022
    Publication date: February 8, 2024
    Inventors: SHAO-HUA HSU, CHIH-WEI WU, MAO-LIN WENG, WEI-YEH TANG, YEN-CHENG LAI, CHUN-CHAN HSIAO, PO-HSIANG CHUANG, CHIH-LONG CHIANG, YIH-ANN LIN, RYAN CHIA-JEN CHEN
  • Patent number: 11894460
    Abstract: A semiconductor device structure is provided. The device includes one or more first semiconductor layers, and a dipole layer surrounding each first semiconductor layer of the one or more first semiconductor layers, wherein the dipole layer comprises germanium. The structure also includes a capping layer surrounding and in contact with the dipole layer, wherein the capping layer comprises silicon, one or more second semiconductor layers disposed adjacent the one or more first semiconductor layers. The structure further includes a gate electrode layer surrounding each first semiconductor layer of the one or more first semiconductor layers and each second semiconductor layer of the one or more second semiconductor layers.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Jia-Ni Yu, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11894367
    Abstract: A method for processing an integrated circuit includes forming first and second gate all around transistors. The method forms a dipole oxide in the first gate all around transistor without forming the dipole oxide in the second gate all around transistor. This is accomplished by entirely removing an interfacial dielectric layer and a dipole-inducing layer from semiconductor nanosheets of the second gate all around transistor before redepositing the interfacial dielectric layer on the semiconductor nanosheets of the second gate all around transistor.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: February 6, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11889608
    Abstract: A track light wireless smart control device includes a track light adaptor including a power live-in pin, a first power live-out pin and a neutral pin, a plug-in stem, a cover, an outer case, a phase-cut dimmer module and a wireless communication module. When mounted to the lighting track, the power live-in pin is connected to the power input loop in the rail, the power live-out pin is connected to the #1 live-out conductor in the rail, and the neutral pin is connected to the neutral conductor in the rail. The wireless communication module receives the command message sent by the remote control device. The phase-cut dimmer module regulates the current to the output conductor loop according to the wireless command message, so as to enable the phase-cut dimmable track lights connected to the #1 live-out conductor to power on, power off, dimming up or dimming down.
    Type: Grant
    Filed: December 11, 2022
    Date of Patent: January 30, 2024
    Assignee: WESTPORT INTERNATIONAL CO., LTD.
    Inventors: Ting-Mao Lin, Dong-Jung Suen
  • Publication number: 20240014265
    Abstract: The present disclosure describes a semiconductor device having an isolation structure. The semiconductor structure includes a set of nanostructures on a substrate, a gate dielectric layer wrapped around the set of nanostructures, a work function metal layer on the gate dielectric layer and around the set of nanostructures, and the isolation structure adjacent to the set of nanostructures and in contact with the work function metal layer. A portion of the work function metal layer is on a top surface of the isolation structure.
    Type: Application
    Filed: March 22, 2023
    Publication date: January 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Lung-Kun CHU, Jia-Ni YU, Chun-Fu LU, Chung-Wei HSU, Mao-Lin HUANG, Kuo-Cheng CHIANG, Chih-Hao WANG
  • Patent number: 11869955
    Abstract: A method for processing an integrated circuit includes forming I/O gate all around transistors and core gate all around transistors. The method performs a regrowth process on an interfacial dielectric layer of the I/O gate all around transistors by diffusing metal atoms into the interfacial dielectric layer of the I/O gate all around transistor. The regrowth process does not diffuse metal atoms into the interfacial gate dielectric layer of the core gate all around transistor.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: January 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jia-Ni Yu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 11862700
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a first dielectric feature extending along a first direction, the first dielectric feature comprising a first dielectric layer having a first sidewall and a second sidewall opposing the first sidewall, a first semiconductor layer disposed adjacent the first sidewall, the first semiconductor layer extending along a second direction perpendicular to the first direction, a second dielectric feature extending along the first direction, the second dielectric feature disposed adjacent the first semiconductor layer, and a first gate electrode layer surrounding at least three surfaces of the first semiconductor layer, and a portion of the first gate electrode layer is exposed to a first air gap.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jia-Ni Yu, Kuo-Cheng Chiang, Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Chun-Fu Lu, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 11862633
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a first transistor having a first conductivity type arranged over a substrate. The first transistor includes a first gate electrode layer having a first work function and extending from a first source/drain region to a second source/drain region, and a first channel structure embedded in the first gate electrode layer and extending from the first source/drain region to the second source/drain region. A second transistor having the first conductivity type is arranged laterally beside the first transistor. The second transistor includes a second gate electrode layer having a second work function that is different than the first work function and extending from a third source/drain region to a fourth source/drain region. A second channel structure is embedded in the second gate electrode layer and extends from the third source/drain region to the fourth source/drain region.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: January 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mao-Lin Huang, Chih-Hao Wang, Kuo-Cheng Chiang, Jia-Ni Yu, Lung-Kun Chu, Chung-Wei Hsu
  • Publication number: 20230411219
    Abstract: A semiconductor device includes a first channel region disposed in a first device region over a substrate; a first gate dielectric layer disposed over the first channel region; a second gate dielectric layer disposed over the second channel region; and a gate electrode disposed over the first gate dielectric layer. The first gate dielectric layer includes a first dipole dopant and the second gate dielectric layer includes a second dipole dopant embedded therein. A boundary between the first gate dielectric layer and the second gat dielectric layer contains the first dipole dopant and the second dipole dopant.
    Type: Application
    Filed: January 9, 2023
    Publication date: December 21, 2023
    Inventors: Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Kuo-Cheng Chiang, Chih-Hao Wang
  • Patent number: 11848368
    Abstract: A semiconductor having a first gate-all-around (GAA) transistor, a second GAA transistor, and a third GAA transistor is provided. The first (GAA) transistor includes a first plurality of channel members, a gate dielectric layer over the first plurality of channel members, a first work function layer over the gate dielectric layer, and a glue layer over the first work function layer. The second GAA transistor include a second plurality of channel members, the gate dielectric layer over the second plurality of channel members, and a second work function layer over the gate dielectric layer, the first work function layer over and in contact with the second work function layer, and the glue layer over the first work function layer. The third GAA transistor includes a third plurality of channel members, the gate dielectric layer over the third plurality of channel members, and the glue layer over the gate dielectric layer.
    Type: Grant
    Filed: October 18, 2021
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu, Jia-Ni Yu, Kuo-Cheng Chiang, Chih-Hao Wang
  • Publication number: 20230395691
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises first semiconductor layers and second semiconductor layers over a substrate, wherein the first semiconductor layers and the second semiconductor layers are separated and stacked up, and a thickness of each second semiconductor layer is less than a thickness of each first semiconductor layer; a first interfacial layer around each first semiconductor layer; a second interfacial layer around each second semiconductor layer; a first dipole gate dielectric layer around each first semiconductor layer and over the first interfacial layer; a second dipole gate dielectric layer around each second semiconductor layer and over the second interfacial layer; a first gate electrode around each first semiconductor layer and over the first dipole gate dielectric layer; and a second gate electrode around each second semiconductor layer and over the second dipole gate dielectric layer.
    Type: Application
    Filed: August 9, 2023
    Publication date: December 7, 2023
    Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Lung-Kun Chu, Mao-Lin Huang, Jia-Ni Yu, Chih-Hao Wang
  • Patent number: 11830924
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary semiconductor device comprises first semiconductor layers and second semiconductor layers over a substrate, wherein the first semiconductor layers and the second semiconductor layers are separated and stacked up, and a thickness of each second semiconductor layer is less than a thickness of each first semiconductor layer; a first interfacial layer around each first semiconductor layer; a second interfacial layer around each second semiconductor layer; a first dipole gate dielectric layer around each first semiconductor layer and over the first interfacial layer; a second dipole gate dielectric layer around each second semiconductor layer and over the second interfacial layer; a first gate electrode around each first semiconductor layer and over the first dipole gate dielectric layer; and a second gate electrode around each second semiconductor layer and over the second dipole gate dielectric layer.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Wei Hsu, Kuo-Cheng Chiang, Lung-Kun Chu, Mao-Lin Huang, Jia-Ni Yu, Chih-Hao Wang