Patents by Inventor Mao-song Tseng

Mao-song Tseng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040217416
    Abstract: A DMOS device having a trench bus structure thereof is introduced. The trench bus structure comprises a field oxide layer formed on a P substrate, and a trench extending from an top surface of the field oxide layer down to a lower portion of the P substrate. A gate oxide layer and a polysilicon bus are formed to fill the trench as a main portion of the bus structure. In addition, an isolation layer and a metal line are formed atop the polysilicon bus and the field oxide layer. An opening is formed in the isolation layer to form connections between the polysilicon bus and the metal line. In specific embodiments, the bus trench and the gate trenches of the DMOS device are formed simultaneously, and the polysilicon bus and the gate electrode are formed simultaneously as well. Therefore, the bus structure is able to form the DMOS transistor without demanding any lithographic step for defining the position of the polysilicon bus.
    Type: Application
    Filed: February 5, 2004
    Publication date: November 4, 2004
    Applicant: MOSEL VITELIC, INC.
    Inventors: Hsin-Huang Hsieh, Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng
  • Publication number: 20040195620
    Abstract: In one embodiment of the invention, a semiconductor device set comprises at least one trench-typed MOSFET and a trench-typed termination structure. The trench-typed MOSFET has a trench profile and comprises a gate oxide layer in the trench profile, and a polysilicon layer on the gate oxide layer. The trench-typed termination structure has a trench profile and comprises an oxide layer in the trench profile. A termination polysilicon layer with discrete features separates the termination polysilicon layer. An isolation layer covers the termination polysilicon layer and filling the discrete features. The trench-typed MOSFET and the trench-typed termination structure may be formed on a DMOS device comprising an N+ silicon substrate, an N epitaxial layer on the N+ silicon substrate, and a P epitaxial layer on the N epitaxial layer. The trench profiles of the trench-typed MOSFET and of the trench-typed termination structure may penetrate through the P epitaxial layer into the N epitaxial layer.
    Type: Application
    Filed: February 3, 2004
    Publication date: October 7, 2004
    Applicant: MOSEL VITELIC, INC.
    Inventors: Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng, Hsing-Huang Hsieh
  • Publication number: 20040166635
    Abstract: Embodiments of the present invention relate to a process for filling a trench structure of a semiconductor device to prevent formation of voids in the trench structure so as to minimize current leakage and provide excellent electrical properties. In one embodiment, a process for filling a trench of a semiconductor device comprises providing a semiconductor substrate; forming a silicon nitride layer on the semiconductor substrate; forming an oxide layer on the silicon nitride layer; partially removing the oxide layer, the silicon nitride layer and the semiconductor substrate to form at least one trench; forming a sacrificial oxide layer on sidewalls of the trench; removing the sacrificial oxide layer; performing an etching procedure to remove portions of the silicon nitride layer protruding from the sidewalls of the trench so as to form substantially even sidewalls of the trench; and forming a trench-fill layer to fill the trench and deposit on the oxide layer.
    Type: Application
    Filed: August 28, 2003
    Publication date: August 26, 2004
    Applicant: MOSEL VITELIC, INC.
    Inventors: Pei-Feng Sun, Shih-Chi Lai, Mao-Song Tseng, Yi-Fu Chung
  • Patent number: 6680261
    Abstract: Embodiments of the present invention are directed to a method of reducing boron outgassing at trench power IC's oxidation process for the sacrificial oxide layer whereby the threshold voltage of the power ICs can be improved and the yield of the product can be enhanced. Nitrogen is introduced into the furnace in the entire oxidation process, including the main oxidation steps. In the preparing step of ramp up, the ramp up step and the stable step, prior to the main oxidation, nitrogen is introduced in a sufficient flow rate to make the environment near the saturated vapor pressure to reduce boron outgassing at the trench.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: January 20, 2004
    Assignee: Mosel Vitelic, Inc.
    Inventors: Jen-Te Chen, Kou-Liang Jaw, Mao-Song Tseng, Kou-Wei Yang
  • Patent number: 6677223
    Abstract: Embodiments of the present invention relate to processes utilized in the manufacturing of a semiconductor device having transistors to achieve high uniformity of threshold voltages. The invention does so by ensuring high uniformity of impurity concentration in the substrate. In one embodiment, a method for manufacturing a semiconductor device having transistors with high uniformity of threshold voltages comprises providing a substrate and a source of impurities, and disposing the substrate and the source of impurities in a first oxygen gas at a first initial temperature and heated to a first target temperature at a first temperature rate to drive the impurities into the substrate. The first initial temperature is sufficiently low to prevent the oxygen from diffusing into the substrate. The substrate is disposed in a second oxygen gas at a second initial temperature and heated to a second target temperature at a second rate to form an oxide layer on the substrate.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: January 13, 2004
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng, Hsin-Huang Hsieh
  • Patent number: 6660592
    Abstract: Embodiment of the present invention are directed to improving the performance of a DMOS transistor. A method of fabricating a DMOS transistor comprises providing a semiconductor substrate having a gate oxide and a trenched gate, and implanting first conductive dopants into a surface of the semiconductor substrate adjacent to the trenched gate to form a first doping region. An insulating layer is deposited over the semiconductor substrate; and selectively etching the insulating layer to form a source contact window over a central portion of the first doping region and to leave an insulator structure above the trenched gate. The source contact window of the insulating layer has an enlarged top portion which is larger in size than a bottom portion of the source contact window closer to the first doping region than the enlarged top portion. The enlarged top portion is typically bowl-shaped.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: December 9, 2003
    Assignee: Mosel Vitelic, Inc.
    Inventors: Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng, Cheng-Tsung Ni
  • Publication number: 20030096485
    Abstract: Embodiment of the present invention are directed to improving the performance of a DMOS transistor. A method of fabricating a DMOS transistor comprises providing a semiconductor substrate having a gate oxide and a trenched gate, and implanting first conductive dopants into a surface of the semiconductor substrate adjacent to the trenched gate to form a first doping region. An insulating layer is deposited over the semiconductor substrate; and selectively etching the insulating layer to form a source contact window over a central portion of the first doping region and to leave an insulator structure above the trenched gate. The source contact window of the insulating layer has an enlarged top portion which is larger in size than a bottom portion of the source contact window closer to the first doping region than the enlarged top portion. The enlarged top portion is typically bowl-shaped.
    Type: Application
    Filed: May 29, 2002
    Publication date: May 22, 2003
    Applicant: MOSEL VITELIC, INC.
    Inventors: Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng, Cheng-Tsung Ni
  • Publication number: 20030068901
    Abstract: Embodiments of the present invention are directed to an improved method for forming dual oxide layers at the bottom of a trench of a substrate. A substrate has a trench which includes a bottom and a sidewall. The trench may be created by forming a mask oxide layer on the substrate; defining the mask oxide layer to form a patterned mask oxide layer and exposing a partial surface of the substrate to form a window; and using the patterned mask oxide layer as an etching mask to form the trench in the window. A first oxide layer is formed on the sidewall and the bottom of the trench of the substrate. A photoresist layer is formed on the substrate, filling the trench of the substrate. The method further comprises partially etching back the photoresist layer to leave a remaining photoresist layer in the trench. The height of the remaining photoresist layer is lower than the depth of the trench. A curing treatment of the remaining photoresist layer is performed after the partial etching.
    Type: Application
    Filed: August 29, 2002
    Publication date: April 10, 2003
    Applicant: MOSEL VITELIC, INC.
    Inventors: Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng, Cheng-Tsung Ni
  • Publication number: 20030060033
    Abstract: Embodiments of the present invention relate to processes utilized in the manufacturing of a semiconductor device having transistors to achieve high uniformity of threshold voltages. The invention does so by ensuring high uniformity of impurity concentration in the substrate. In one embodiment, a method for manufacturing a semiconductor device having transistors with high uniformity of threshold voltages comprises providing a substrate and a source of impurities, and disposing the substrate and the source of impurities in a first oxygen gas at a first initial temperature and heated to a first target temperature at a first temperature rate to drive the impurities into the substrate. The first initial temperature is sufficiently low to prevent the oxygen from diffusing into the substrate. The substrate is disposed in a second oxygen gas at a second initial temperature and heated to a second target temperature at a second rate to form an oxide layer on the substrate.
    Type: Application
    Filed: August 13, 2002
    Publication date: March 27, 2003
    Applicant: MOSEL VITELIC, INC. A Taiwanese Corporation
    Inventors: Chiao-Shun Chuang, Chien-Ping Chang, Mao-Song Tseng, Hsin-Huang Hsieh
  • Publication number: 20030054665
    Abstract: Embodiments of the present invention are directed to a method of reducing boron outgassing at trench power IC's oxidation process for the sacrificial oxide layer whereby the threshold voltage of the power ICs can be improved and the yield of the product can be enhanced. Nitrogen is introduced into the furnace in the entire oxidation process, including the main oxidation steps. In the preparing step of ramp up, the ramp up step and the stable step, prior to the main oxidation, nitrogen is introduced in a sufficient flow rate to make the environment near the saturated vapor pressure to reduce boron outgassing at the trench.
    Type: Application
    Filed: April 25, 2002
    Publication date: March 20, 2003
    Applicant: MOSEL VITELIC, INC.
    Inventors: Jen-Te Chen, Kou-Liang Jaw, Mao-Song Tseng, Kou-Wei Yang
  • Patent number: 6365455
    Abstract: An EPROM cell and a method that includes a gate structure having a sidewall spacer. The sidewall spacer is made by way of an amorphous or polycrystalline silicon layer, which is converted into an insulating layer such as silicon dioxide. Deposition of the amorphous or polycrystalline silicon layer is more accurate and produces a more uniform layer than conventional dielectric layer deposition.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: April 2, 2002
    Assignee: Mosel Vitelic, Inc.
    Inventors: Wen-Doe Su, Thomas Chang, Kuo-Tung Sung, Mao Song Tseng, Shih-Chi Lai, Kun-Yu Sung, Liang-Chen Lin
  • Publication number: 20020006704
    Abstract: A process for forming a gate oxide layer of a trench power MOSFET is provided. The process includes steps of providing a silicon substrate, forming a mask layer on the silicon substrate, removing a portion of the mask layer to expose a portion of the silicon substrate, removing the exposed portion of the silicon substrate to form the trench, removing remaining portion of the mask layer, forming a sacrificial oxide layer on the silicon substrate and on the bottom and sidewall of the trench by thermal oxidation under an operating temperature ranged from 1150 to 1300° C. and an operating time ranged from 20 to 60 minutes, removing the sacrificial oxide layer, and forming a gate oxide layer on the silicon substrate and on the bottom and sidewall of the trench.
    Type: Application
    Filed: January 12, 2001
    Publication date: January 17, 2002
    Applicant: Mosel Vitelic Inc.
    Inventors: Mao-Song Tseng, Su-Wen Chang, Chien-Ping Chang, Chiao-Shun Chuang
  • Patent number: 6335260
    Abstract: In the invention, a photoresist layer is first spread on a semiconductor structure, and then using a photomask with a specially designed pattern exposes the photoresist layer. Next, the photoresist layer is developed to form a patterned photoresist layer. Thereafter, using the patterned photoresist layer as a mask, a trench is formed in the semiconductor structure by selective etching. The pattern of the photomask according to the invention is formed as in the following steps. At first, a first pattern extending in a first direction and having a first side and a second side that is opposite to the first side is formed. Next, a second pattern extending in a second direction that is perpendicular to the first direction is formed in such a way that an end of the second pattern is connected with the first side of the first pattern. Thereafter, a concave edge is formed on the second side to substantially face the second pattern.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: January 1, 2002
    Assignee: Mosel Vitelic Inc.
    Inventors: Mao-song Tseng, Rong-ching Chen, Chin-lin Lin, Su-wen Chang
  • Patent number: 6184092
    Abstract: A method for forming a self-aligned contact for a trench DMOS transistor comprises: providing a semiconductor substrate; etching a trench into the semiconductor substrate at a selected location on the surface of the semiconductor substrate; forming a first dielectric layer that covers the semiconductor substrate and walls of the trench; forming a plug in the trench, which comprises a step of depositing a semiconductor layer that covers the semiconductor substrate and fills in the trench, and a step of etching the semiconductor layer until the plug is below the trench for about 0.2 to 0.3 micron; forming a second dielectric layer on the plug; and forming a conductive layer over the second dielectric layer and the surface of the semiconductor substrate for ohmic contact regions.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: February 6, 2001
    Assignee: Mosel Vitelic Inc.
    Inventors: Mao-song Tseng, Rong-ching Chen, Su-wen Chang, Chin-lin Lin
  • Patent number: 5930593
    Abstract: The present invention provides a method for forming a device on a wafer without peeling, in which the wafer has a substrate forming thereon a first dielectric layer forming thereon a first conducting layer having thereon a device area and an edge area. This method includes steps of a) forming a second dielectric layer on the device area and the edge area, b) forming a photoresist layer on the second dielectric layer, c) selectively removing the second dielectric layer, the photoresist layer, and the first conducting layer from and presenting thereby the device area and the edge area with a desired dielectric layer, and d) forming a metal film on the device area and the edge area.
    Type: Grant
    Filed: July 16, 1997
    Date of Patent: July 27, 1999
    Assignee: Mosel Vitelic Inc.
    Inventors: Cheng-Hsun Tsai, Yui-Ping Huang, Mao-Song Tseng, Yuan-Lung Lin