Patents by Inventor Marc Anderson

Marc Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230030295
    Abstract: Aspects of the present disclosure provide a delivery device including a tubular outer jacket having a distal end and a tyne assembly including a shaft supporting at least one tyne. In some aspects, an inner jacket is positioned within the outer jacket, wherein the tyne assembly is positioned between the outer jacket and the inner jacket. The delivery device has a delivery configuration in which the tynes are maintained within the outer jacket and a deployed configuration in which the tynes extend from a distal end of the tubular outer jacket. Aspects of the disclosure also provide methods of conducting a percutaneous coronary intervention including utilizing one or more tyne assemblies to engage the tynes of each tyne assembly with the frame to maintain the position of the delivery device.
    Type: Application
    Filed: March 23, 2021
    Publication date: February 2, 2023
    Inventors: Marc A. Anderson, Stephen Montgomery, Michael J. Donegan, Emma Keane, David Killeen, Shane Nolan, Frank White, Raymond Ryan
  • Patent number: 11464946
    Abstract: Embodiments hereof relate to methods of delivering a valve prosthesis to an annulus of a native valve of a heart, the native valve having chordae tendineae. A chordae management catheter is positioned within a ventricle of the heart, the chordae management catheter having a displacement component at a distal end thereof. The displacement component has an annular shape and defines a central lumen therethrough. The displacement component is radially expanded to push chordae tendineae within the ventricle radially outward. A valve delivery system is introduced into the ventricle of the heart via a ventricular wall of the heart. The valve delivery system has the valve prosthesis at a distal portion thereof. The valve delivery system is advanced through the central lumen of the radially expanded displacement component towards the annulus of the native valve of the heart. The valve prosthesis is deployed into apposition with the annulus of the native valve.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: October 11, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Paul Devereux, Paraic Frisby, Frank White, Tomas Kitt, Marc Anderson, Grainne Carroll, Ciaran McGuinness, Tim Jones, Patrick Griffin
  • Publication number: 20220303355
    Abstract: A computer-implemented method for retrieving information from information services and providing it to a public application programming interface (API) includes receiving a first request data message using a core discovery agent, the request data message including at least one requested datum, for which a value is sought, and at least one known datum, for which a value is known; calling a resource locator to request a location of an information service that provides a value for the requested datum; calling a resource façade to contact the information service; transmitting a first information service message including the requested datum and known datum from the resource façade to the information service; receiving a second information service message from the information service including a value for the requested datum; and transmitting a resolved data message including the requested datum and its value from the core discovery agent to the public API.
    Type: Application
    Filed: April 7, 2022
    Publication date: September 22, 2022
    Applicant: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Richard Simon, Jeremy Lee Rambo, John M. VanAntwerp, Dan Kalmes, Burton J. Floyd, Thad Garrett Craft, Marc Anderson, Nick U. Christopulos, Patrick Mead, Richard Berglund, Erik Donahue, Joseph W. Norton, Vladyslava Matviyenko
  • Publication number: 20220286531
    Abstract: Systems and methods may be provided for generating applications that may be agile, personalized, quickly delivered, and capable of being seamlessly integrated across an organization. The behavior and functionality of the applications (e.g., user interfaces therein) may be tailored specifically to individual users in response to learned user preferences. Consequently, these dynamic user experience (UX) applications may be rapidly deployed and capable of providing a satisfactory yet complete user experience across one or more applications. The methods and systems may include receiving a user objective, selecting a path associated with one or more steps, generating a dynamic UX application based on the steps, transmitting the dynamic UX application to the user, and displaying the dynamic UX application.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: John M. VanAntwerp, Dan Kalmes, Victoria Ann Spaulding-Burford, Marc Anderson
  • Publication number: 20220175528
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 9, 2022
    Inventors: Sarah AHLBERG, Marc ANDERSON, Donna BARRETT, Evelyn BIRMINGHAM, Constantin CIOBANU, Kieran CUNNINGHAM, Paul DEVEREUX, Niall DUFFY, John GALLAGHER, Patrick GRIFFIN, Frank HAREWOOD, Gerry MCCAFFREY, DEIRDRE MCGOWAN SMYTH, Bernard MULVIHILL, Herinaina Rabarimanantsoa JAMOUS, Joel RACCHINI, Jeffrey SANDSTROM, Frank WHITE
  • Patent number: 11351027
    Abstract: A system for repairing a defective heart valve. The system includes a delivery device, a balloon and a prosthetic heart valve. The delivery device includes an inner shaft assembly and a delivery sheath assembly. The delivery sheath assembly provides a capsule terminating at a distal end. The prosthesis includes a stent carrying a prosthetic valve. In a delivery state, the capsule maintains the prosthesis in a collapsed condition over the inner shaft assembly, and the balloon is in a deflated arrangement radially between the prosthetic heart valve and the capsule. In a deployment state, at least a portion of the balloon and at least a portion of the prosthetic heart valve are distal the capsule. Further, the balloon is inflated and surrounds an exterior of at least a portion of the prosthetic heart valve. The balloon controls self-expansion of the prosthetic heart valve.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 7, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Marc Anderson, Patrick Griffin
  • Publication number: 20220160498
    Abstract: Embodiments hereof relate methods of delivering a valve prosthesis to an annulus of a native valve of a heart. A valve delivery system is introduced into a ventricle of the heart via a ventricular wall of the heart. The valve delivery system has a displacement component at the distal portion thereof. The valve prosthesis is in a delivery configuration and the displacement component is in a delivery state in which the displacement component has a first outer diameter. While the valve prosthesis is in the delivery configuration, the displacement component of the valve delivery system is radially expanded into an expanded state in which the displacement component has a second outer diameter greater than the first outer diameter. The valve delivery system is advanced towards the annulus of the native valve of the heart with the displacement component in the expanded state to displace chordae tendineae.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Inventors: Frank White, Tim Jones, Marc Anderson, Paraic Frisby, Emma Keane, Brendan Vaughan
  • Publication number: 20220160344
    Abstract: An introducer sheath system including an outer layer, an inner layer, and a dilator is disclosed. The outer layer is circumferentially extending between a first longitudinal edge and a second longitudinal edge. An expandable gap is defined between the first and second longitudinal edges. The inner layer is disposed within the outer layer. The inner layer is configured to be continuously circumferentially expandable. The inner layer includes a non-extended state having a circumferential portion extending circumferentially inside the outer layer and a fold portion extending into an interior cavity of the inner layer. The inner layer includes an extended state wherein the fold portion extends at least partially circumferentially between the first and second longitudinal edges. The dilator is extendable longitudinally within the inner layer. The dilator includes a recess configured to accommodate the fold portion of the inner layer.
    Type: Application
    Filed: February 11, 2022
    Publication date: May 26, 2022
    Applicant: Medtronic Vascular, Inc.
    Inventor: Marc Anderson
  • Patent number: 11340872
    Abstract: Systems and methods may be provided for generating applications that may be agile, personalized, quickly delivered, and capable of being seamlessly integrated across an organization. The behavior and functionality of the applications (e.g., user interfaces therein) may be tailored specifically to individual users in response to learned user preferences. Consequently, these dynamic user experience (UX) applications may be rapidly deployed and capable of providing a satisfactory yet complete user experience across one or more applications. The methods and systems may include receiving a user objective, selecting a path associated with one or more steps, generating a dynamic UX application based on the steps, transmitting the dynamic UX application to the user, and displaying the dynamic UX application.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: May 24, 2022
    Assignee: State Farm Mutual Automobile Insurance Company
    Inventors: John M. VanAntwerp, Dan Kalmes, Victoria Ann Spaulding-Burford, Marc Anderson
  • Patent number: 11273034
    Abstract: Embodiments hereof relate methods of delivering a valve prosthesis to an annulus of a native valve of a heart. A valve delivery system is introduced into a ventricle of the heart via a ventricular wall of the heart. The valve delivery system has a displacement component at the distal portion thereof. The valve prosthesis is in a delivery configuration and the displacement component is in a delivery state in which the displacement component has a first outer diameter. While the valve prosthesis is in the delivery configuration, the displacement component of the valve delivery system is radially expanded into an expanded state in which the displacement component has a second outer diameter greater than the first outer diameter. The valve delivery system is advanced towards the annulus of the native valve of the heart with the displacement component in the expanded state to displace chordae tendineae.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: March 15, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventor: Marc Anderson
  • Patent number: 11273035
    Abstract: Transcatheter heart valve delivery systems having a tip assembly configured to close the hole or perforation made in a patient's septal wall after transseptal delivery of a stented prosthetic heart valve to a defective heart valve (e.g., a mitral valve). The delivery device is configured to permit in vivo release of the tip assembly immediately after deployment of the stented prosthetic heart valve to implant the tip assembly into the septal wall proximate the hole through which the stented prosthetic heart valve is delivered. Methods of treating the defective heart valve, including closing the hole made during transseptal delivery of the stented prosthetic heart valve with the tip assembly of the delivery device are also disclosed.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 15, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventor: Marc Anderson
  • Publication number: 20220054264
    Abstract: Balloon catheters for delivery of prosthetic hear valves is provided. The balloon catheters are configured to deploy a prosthetic heart valve through inflation. The balloon catheters are further configured with one or more retention bumpers to reduce or prevent migration of the prosthetic heart valve during delivery. Balloon catheters described herein are configured with substantially incompressible retention bumpers that promote longitudinal inflation fluid flow.
    Type: Application
    Filed: August 19, 2021
    Publication date: February 24, 2022
    Inventors: Alan T. MCGUINN, Alistair COURTNEY, Amy L. COMAR, William BERTHIAUME, Conleth MULLEN, David F. LYDON, Declan SILKE, Dmitry SHEREMETIEV, Eoghan TWOHIG, Gavin KENNY, James HANNON, James MITCHELL, Jonathan G. MCCULLOUGH, Kevin NEWELL, Leonila RIVERA, Marc A. ANDERSON, Martha BARAJAS-TORRES, Matthew NORGROVE, Michael R. O'CONNOR, Micheal FALLON, Niall DUFFY, Padraig IRWIN, Padraigh JENNINGS, Reiss CONNOLLY, Richard CAHILL, Shane M. MARTIN, Simon HOGAN, Victoria UNG, William CHANG, Tamas Jager
  • Patent number: 11246581
    Abstract: An introducer sheath system including an outer layer, an inner layer, and a dilator is disclosed. The outer layer is circumferentially extending between a first longitudinal edge and a second longitudinal edge. An expandable gap is defined between the first and second longitudinal edges. The inner layer is disposed within the outer layer. The inner layer is configured to be continuously circumferentially expandable. The inner layer includes a non-extended state having a circumferential portion extending circumferentially inside the outer layer and a fold portion extending into an interior cavity of the inner layer. The inner layer includes an extended state wherein the fold portion extends at least partially circumferentially between the first and second longitudinal edges. The dilator is extendable longitudinally within the inner layer. The dilator includes a recess configured to accommodate the fold portion of the inner layer.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: February 15, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventor: Marc Anderson
  • Publication number: 20220031487
    Abstract: A system includes an inflow loading assembly configured to compress an inflow portion of the implantable medical device as the implantable medical device is advanced through the inflow loading assembly. The system also includes an outflow loading assembly removably coupled to the inflow loading assembly. The outflow loading assembly is configured to partially compress an outflow portion of the implantable medical device during coupling to the inflow loading assembly. The inflow loading assembly includes one or more biasing features that are configured to asymmetrically compress the inflow portion of the implantable medical device.
    Type: Application
    Filed: July 7, 2021
    Publication date: February 3, 2022
    Inventors: Jake DUNLEA, Luke LEHMANN, Dermot O'Brien, Bernard Patrick MULVIHILL, Marc A. ANDERSON
  • Publication number: 20210176208
    Abstract: Provided is a method for providing a response to a user query for domain-related information of a domain. The method can include obtaining, at a client over a network, the user query for the domain-related information, and identifying one or more thick services based on thin data for the domain. The method can also include providing, by the client, the user query to the identified one or more thick services and obtaining a first answer to the user query from the one or more thick services. Furthermore, the method can include providing a second answer to a user based on the first answer.
    Type: Application
    Filed: February 17, 2021
    Publication date: June 10, 2021
    Inventors: Patrick KANE, Marc ANDERSON, Scott HOLLENBECK, Swapneel SHETH, Joseph WALDRON, James GOULD
  • Publication number: 20210161661
    Abstract: Methods of transcatheter delivery of a prosthetic heart valve. A distal region of a guide member assembly is advanced into a heart of a patient. The distal region is docked to native anatomy of the heart. A delivery device, including a collapsed prosthetic heart valve, is advanced over the docked guide member assembly. The collapsed prosthetic heart valve is located at an implantation site. The prosthetic heart valve is deployed from the delivery device, and then the delivery device is removed from the patient. At least a portion of the guide member assembly is removed from the patient. In some embodiments, the docking structure is docked to one or more of native mitral valve leaflets, chordae in the left ventricle, or walls of the left ventricle as part of a transseptal mitral valve delivery procedure.
    Type: Application
    Filed: February 11, 2021
    Publication date: June 3, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: Marc A. Anderson, Grainne Teresa Carroll, Paul Devereux, Niall Duffy, Matthew Fleming, Alexander J. Hill, Elliot J. Howard, James R. Keogh, Marian Patricia Lally, Luke Lehmann, Jeffrey Madden, Kevin M. Mauch, Ciaran McGuinness, Brian T. McHenry, Karl L. Olney, Geoffrey Orth, Edward Sarnowski, Elizabeth A. Schotzko, Benjamin Wong
  • Publication number: 20210121291
    Abstract: A delivery device for implanting a prosthetic heart valve. The device includes an inner shaft assembly, an outer sheath and a connector assembly. The inner shaft assembly defines a guide wire lumen. The outer sheath is slidably received over the inner shaft assembly, and forms an exit port proximate a distal end thereof. The connector assembly establishes a guide wire passageway between the guide wire lumen and the exit port. The connector assembly is configured to permit sliding movement of the outer sheath relative to the inner shaft assembly when deploying the prosthetic heart valve. The connector assembly can include first and second tubes that are slidable relative to one another in facilitating movement of the outer sheath relative to the inner shaft assembly.
    Type: Application
    Filed: January 5, 2021
    Publication date: April 29, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: Kieran Cunningham, Marc Anderson, Declan Costello, Patrick Griffin
  • Patent number: 10979515
    Abstract: A computer-implemented method for retrieving information from information services and providing it to a public application programming interface (API) includes receiving a first request data message using a core discovery agent, the request data message including at least one requested datum, for which a value is sought, and at least one known datum, for which a value is known; calling a resource locator to request a location of an information service that provides a value for the requested datum; calling a resource façade to contact the information service; transmitting a first information service message including the requested datum and known datum from the resource façade to the information service; receiving a second information service message from the information service including a value for the requested datum; and transmitting a resolved data message including the requested datum and its value from the core discovery agent to the public API.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: April 13, 2021
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Richard Simon, Jeremy Lee Rambo, John M. VanAntwerp, Dan Kalmes, Burton J. Floyd, Thad Garrett Craft, Marc Anderson, Nick U. Christopulos, Patrick Mead, Richard Berglund, Erik Donahue, Joseph W. Norton, Vladyslava Matviyenko
  • Publication number: 20210077258
    Abstract: A heart valve therapy system including a delivery device and a stented valve. The delivery device includes an outer sheath, an inner shaft, an optional hub assembly, and a plurality of tethers. In a delivery state, a stent frame of the prosthesis is crimped over the inner shaft and maintained in a compressed condition by the outer sheath. The tethers are connected to the stent frame. In a partial deployment state, the outer sheath is at least partially withdrawn, allowing the stent frame to self-expand. Tension in the tethers prevents the stent frame from rapidly expanding and optionally allowing recapture. Upon completion of the stent frame expansion, the tethers are withdrawn.
    Type: Application
    Filed: December 1, 2020
    Publication date: March 18, 2021
    Applicant: Medtronic Vascular Galway
    Inventors: Marian Creaven, Marc Anderson, Kate Corish, Declan Costello, Niall Duffy, Joshua Dwork, John Gallagher, Patrick Griffin, Gavin Kenny, Deirdre McGowan Smyth, John Milroy, Jason Quill, Herinaina Rabarimanantsoa Jamous, Paul Rothstein, Jeffrey Sandstrom, Edmond Sheahan, Frank White
  • Publication number: 20210068954
    Abstract: A valve delivery system and valve delivery method are disclosed. The valve delivery system includes an inner shaft extending along a longitudinal axis and an elongated tension member to continuously circumferentially coil around a prosthetic valve disposed on the inner shaft to form a sheath portion to releasably contain the prosthetic valve on the inner shaft in a compressed state, the elongated tension member extending from the sheath portion along the longitudinal axis of the inner shaft.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 11, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: Marc Anderson, Niall Crosbie, James R. Keogh