Patents by Inventor Marc B. Cartier

Marc B. Cartier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12184012
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. The connector may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. Modules of different sizes may be assembled into wafers, which are then assembled into a connector. Wafers may include lossy material. In some embodiments, shielding members of two mating connectors may each have compliant members along their distal portions, such that, the shielding members engage at points of contact at multiple locations, some of which are adjacent the mating edge of each of the mating shielding members.
    Type: Grant
    Filed: June 15, 2023
    Date of Patent: December 31, 2024
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., John Robert Dunham, Mark W. Gailus, Donald A. Girard, Jr., David Manter, Tom Pitten, Vysakh Sivarajan, Michael Joseph Snyder
  • Patent number: 12171063
    Abstract: A printed circuit board includes a plurality of layers including conductive layers separated by dielectric layers; and at least one via configured for solder attachment to a connector lead of a surface mount connector, the at least one via including a conductive element that extends from an upper surface of the printed circuit board through one or more of the plurality of layers, the conductive element having a recess in a surface thereof. The recess is configured to receive a tip portion of the connector lead of the surface mount connector. The printed circuit board may have via patterns including signal vias and ground vias.
    Type: Grant
    Filed: July 24, 2023
    Date of Patent: December 17, 2024
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., Mark W. Gailus, Tom Pitten, Donald A. Girard, Jr., Huilin Ren
  • Patent number: 12166304
    Abstract: Connector assemblies for making connections to a subassembly, such as a processor card, may include signal contact tips formed of a material different than that of an associated cable conductor. The signal contact tips may be formed of a super elastic material, such as nickel titanium. The connector assembly may include ground contact tips that similarly make a pressure contact to the electrical component may be electrically connected to a shield of the cable shield Housing modules that interlock or interface with a support member may be employed to manufacture connectors with any desired quantity of signal and ground contact tips in any suitable number of columns and rows. Each module may terminate a cable and provide pressure mount connections between signal conductors and the shield of the cable and conductive pads on the subassembly, and conductive or lossy grounded structures around the conductive elements carrying signals through the module.
    Type: Grant
    Filed: July 6, 2023
    Date of Patent: December 10, 2024
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., Donald A. Girard, Jr., Eric Leo
  • Patent number: 12095218
    Abstract: A modular high speed, high density electrical connector configurable for use in multiple configurations, including a direct attach orthogonal configuration. The connector is assembled with modules that include shielded pairs of signal conductors with mating ends that are rotated approximately 45 degrees with respect to intermediate portions of the signal conductors. The connector may have a mating interface with receptacles in one connector and pins in the mating connector. The pins may be small diameter and may be implemented with superelastic wires so as to resist damage despite having very small effective diameter. A compact mating interface resulting from small diameter mating contact portions may enable other portions of the connector, including the shielding surrounding the signal conductors to be smaller, which may raise the resonant frequency of the connector and extend its bandwidth.
    Type: Grant
    Filed: June 22, 2023
    Date of Patent: September 17, 2024
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., John Robert Dunham, Mark W. Gailus, John Pitten
  • Publication number: 20240196518
    Abstract: A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns including first and second signal vias forming a differential signal pair, the first and second signal vias extending through at least the attachment layers; ground vias extending through at least the attachment layers, the ground vias including ground conductors; and shadow vias located adjacent to each of the first and second signal vias, wherein the shadow vias are free of conductive material in the attachment layers. The printed circuit board may further include slot vias extending through the attachment layers and located between via patterns.
    Type: Application
    Filed: February 21, 2024
    Publication date: June 13, 2024
    Applicant: Amphenol Corporation
    Inventors: Mark W. Gailus, Marc B. Cartier, JR., Vysakh Sivarajan, David Levine
  • Patent number: 11950356
    Abstract: A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns including first and second signal vias forming a differential signal pair, the first and second signal vias extending through at least the attachment layers; ground vias extending through at least the attachment layers, the ground vias including ground conductors; and shadow vias located adjacent to each of the first and second signal vias, wherein the shadow vias are free of conductive material in the attachment layers. The printed circuit board may further include slot vias extending through the attachment layers and located between via patterns.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: April 2, 2024
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, Marc B. Cartier, Jr., Vysakh Sivarajan, David Levine
  • Publication number: 20240097360
    Abstract: A modular high speed, high density electrical connector configurable for use in multiple configurations, including a direct attach orthogonal configuration. The connector is assembled with modules that include shielded pairs of signal conductors with mating ends that are rotated approximately 45 degrees with respect to intermediate portions of the signal conductors. The connector may have a mating interface with receptacles in one connector and pins in the mating connector. The pins may be small diameter and may be implemented with superelastic wires so as to resist damage despite having very small effective diameter. A compact mating interface resulting from small diameter mating contact portions may enable other portions of the connector, including the shielding surrounding the signal conductors to be smaller, which may raise the resonant frequency of the connector and extend its bandwidth.
    Type: Application
    Filed: June 22, 2023
    Publication date: March 21, 2024
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, John Pitten
  • Patent number: 11901660
    Abstract: A broadside coupled connector assembly has two sets of conductors, each separate planes. By providing the same path lengths, there is no skew between the conductors of the differential pair and the impedance of those conductors is identical. The conductor sets are formed by embedding the first set of conductors in an insulated housing having a top surface with channels. The second set of conductors is placed within the channels so that no air gaps form between the two sets of conductors. A second insulated housing is filled over the second set of conductors and into the channels to form a completed wafer. The ends of the conductors are received in a blade housing. Differential and ground pairs of blades have one end that extends through the bottom of the housing having a small footprint. An opposite end of the pairs of blades diverge to connect with the wafers.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: February 13, 2024
    Assignee: Amphenol Corporation
    Inventors: Thomas S. Cohen, Huilin Ren, Marc B. Cartier, Jr., Trent K. Do, Mark W. Gailus
  • Publication number: 20240030660
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. The connector may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. Modules of different sizes may be assembled into wafers, which are then assembled into a connector. Wafers may include lossy material. In some embodiments, shielding members of two mating connectors may each have compliant members along their distal portions, such that, the shielding members engage at points of contact at multiple locations, some of which are adjacent the mating edge of each of the mating shielding members.
    Type: Application
    Filed: June 15, 2023
    Publication date: January 25, 2024
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, Donald A. Girard, JR., David Manter, Tom Pitten, Vysakh Sivarajan, Michael Joseph Snyder
  • Publication number: 20240014609
    Abstract: A modular electrical connector with broad-side coupled signal conductors in a right angle intermediate portion. Broadside coupling provides balanced pairs for very high frequency operation. The connector may be assembled with multiple subassemblies, each of which may have multiple pairs of signal conductors. The subassemblies may be formed from an insulative portion having grooves in opposite sides into which the intermediate portions of signal conductors. Covers, holding the signal conductors in the grooves, may establish the position of the signal conductors relative to reference conductors at the exterior of subassembly, so as to provide a controlled impedance. Lossy material may be positioned between the pairs in a subassembly and/or may contact the reference conductors of the subassemblies, and the lossy material of the subassemblies may in turn be connected with a conductive structure.
    Type: Application
    Filed: May 12, 2023
    Publication date: January 11, 2024
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, Donald A. Girard, JR., Brian Kirk, David Levine, Vysakh Sivarajan
  • Publication number: 20230420874
    Abstract: An electrical interconnect for passing high speed signals through an electronic system with a high density of signals and high signal integrity. The interconnect includes an electrical connector and a transition portion of a printed circuit board to which the connector is mounted. Signal conductors are connected to pads on the surface of the PCB using edge-to-pad mounting. The pads align with intermediate portions of the signal conductors such that transitions within the connector that could degrade signal integrity are avoided. The signal conductors may be positioned as individually shielded broadside coupled pairs extending in rows within the connector. Surface traces on the PCB connect the pads to signal vias aligned for vertical routing out of the connector footprint. Ground planes underlying the surface traces facilitate a transition from the signal paths in the connector to those in the PCB with low mode conversion avoiding resonances in the connector shields.
    Type: Application
    Filed: April 24, 2023
    Publication date: December 28, 2023
    Applicant: Amphenol Corporation
    Inventors: John Robert Dunham, Marc B. Cartier, JR., Mark W. Gailus, David Levine, Allan Astbury, Vysakh Sivarajan, Daniel B. Provencher, Eric Leo
  • Patent number: 11837814
    Abstract: A modular electrical connector with modular components suitable for assembly into a right angle connector may also be used in forming an orthogonal connector or connector in other desired configurations. The connector modules may be configured through the user of extender modules. Those connector modules may be held together as a right angle connector with a front housing portion, which, in some embodiments, may be shaped differently depending on whether the connector modules are used to form a right angle connector or an orthogonal connector. When designed to form an orthogonal connector, the extender modules may interlock into subarrays, which may be held to other connector components through the use of an extender shell. The mating contact portions on the extender modules may be such that a right angle connector, similarly made with connector modules, may directly mate with the orthogonal connector.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: December 5, 2023
    Assignee: Amphenol Corporation
    Inventors: Allan Astbury, John Robert Dunham, Marc B. Cartier, Jr., Mark W. Gailus, Daniel B. Provencher
  • Patent number: 11824311
    Abstract: A modular electrical connector facilitates low loss connections to components on a printed circuit board. A portion is of the connector is formed of one or more first type units with conductive elements designed to be attached to a printed circuit board. Signals passing through those units may be routed to components on the printed circuit board through traces in the board. One or more second type units may be integrated with the connector. Those units may be designed for attachment to a cable, which may provide signal paths to a location on the printed circuit board near relatively distant components.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: November 21, 2023
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, Allan Astbury, David Manter, Marc B. Cartier, Jr., Vysakh Sivarajan, John Robert Dunham
  • Publication number: 20230371178
    Abstract: A printed circuit board includes a plurality of layers including conductive layers separated by dielectric layers; and at least one via configured for solder attachment to a connector lead of a surface mount connector, the at least one via including a conductive element that extends from an upper surface of the printed circuit board through one or more of the plurality of layers, the conductive element having a recess in a surface thereof. The recess is configured to receive a tip portion of the connector lead of the surface mount connector. The printed circuit board may have via patterns including signal vias and ground vias.
    Type: Application
    Filed: July 24, 2023
    Publication date: November 16, 2023
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., Mark W. Gailus, Tom Pitten, Donald A. Girard, JR., Huilin Ren
  • Publication number: 20230352866
    Abstract: Connector assemblies for making connections to a subassembly, such as a processor card, may include signal contact tips formed of a material different than that of an associated cable conductor. The signal contact tips may be formed of a super elastic material, such as nickel titanium. The connector assembly may include ground contact tips that similarly make a pressure contact to the electrical component may be electrically connected to a shield of the cable shield Housing modules that interlock or interface with a support member may be employed to manufacture connectors with any desired quantity of signal and ground contact tips in any suitable number of columns and rows. Each module may terminate a cable and provide pressure mount connections between signal conductors and the shield of the cable and conductive pads on the subassembly, and conductive or lossy grounded structures around the conductive elements carrying signals through the module.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 2, 2023
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., Donald A. Girard, JR., Eric Leo
  • Publication number: 20230327363
    Abstract: A modular electrical connector with modular components suitable for assembly into a right angle connector may also be used in forming an orthogonal connector or connector in other desired configurations. The connector modules may be configured through the user of extender modules. Those connector modules may be held together as a right angle connector with a front housing portion, which, in some embodiments, may be shaped differently depending on whether the connector modules are used to form a right angle connector or an orthogonal connector. When designed to form an orthogonal connector, the extender modules may interlock into subarrays, which may be held to other connector components through the use of an extender shell. The mating contact portions on the extender modules may be such that a right angle connector, similarly made with connector modules, may directly mate with the orthogonal connector.
    Type: Application
    Filed: June 12, 2023
    Publication date: October 12, 2023
    Applicant: Amphenol Corporation
    Inventors: Allan Astbury, John Robert Dunham, Marc B. Cartier, Mark W. Gailus, Daniel B. Provencher
  • Patent number: 11764523
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. In some embodiments, the connector is may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. In some embodiments, the modules may have projecting portions, of conductive and/or dielectric material, that are shaped and positioned to reduce changes in impedance along the signal paths as a function of separation of conductive elements, when the connectors are separated by less than the functional mating range.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: September 19, 2023
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, John Robert Dunham, Marc B. Cartier, Jr., Donald A. Girard, Jr.
  • Patent number: D1002551
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: October 24, 2023
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., Mark W. Gailus, David Levine, Vysakh Sivarajan, John Robert Dunham, John Pitten
  • Patent number: D1002552
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: October 24, 2023
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., Mark W. Gailus, David Levine, Vysakh Sivarajan, John Robert Dunham, John Pitten
  • Patent number: D1002553
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: October 24, 2023
    Assignee: Amphenol Corporation
    Inventors: Donald A. Girard, Jr., Barbara Calderon, Marc B. Cartier, Jr., David Levine, David Manter