Patents by Inventor Marc Fine

Marc Fine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220082557
    Abstract: Among other things, two or more different antibodies are caused to bind to one or more units of a chemical component in a sample. Each of the antibodies is attached to one or more beads (e.g., microbeads). The sample is situated on a surface of an image sensor. At the image sensor, light is received originating at a light source that is other than the beads. The received light includes light reflected by, refracted by, or transmitted through the beads. At least one image of the sample is processed to separately enumerate individual beads and complexes of two or more of the beads attached to the two or more antibodies that are bound to a unit of the chemical component. The results of the processing are used to identify a presence or a level of the chemical component in the sample.
    Type: Application
    Filed: August 23, 2021
    Publication date: March 17, 2022
    Inventor: Alan Marc Fine
  • Patent number: 11255850
    Abstract: A method includes attaching two or more beads to each unit of one or more units of a chemical component in a sample, to form, for each unit of the chemical component, a multi-bead complex including two or more beads and the unit of the chemical component; placing the sample on a surface of an image sensor; at the image sensor, receiving light originating at a light source, the received light including light reflected by, refracted by, or transmitted through the beads of the multi-bead complexes; at the image sensor, capturing one or more images of the sample from the received light; and identifying, in at least one of the images of the sample, separate multi-bead complexes, the identifying of the separate multi-bead complexes including associating the two or more beads of each of the multi-bead complexes based on proximity to one another.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: February 22, 2022
    Inventor: Alan Marc Fine
  • Publication number: 20210311037
    Abstract: Two or more upconverting particles are attached to each unit of one or more units of a chemical component in a sample, to form, for each unit of the chemical component, a multi-particle complex including the unit of the chemical component and two or more corresponding upconverting particles. The sample is illuminated by input light having a first wavelength. Light is received at an imaging sensor, the received light including output light generated by at least a portion of the upconverting particles attached to the units of the chemical component, the output light having a second wavelength that is shorter than the first wavelength. One or more images of the sample are captured from the received light. Based on the captured one or more images, a presence or a level of the chemical component in the sample is determined.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventor: Alan Marc Fine
  • Publication number: 20210311038
    Abstract: An indicator of a first type and an indicator of a second type are attached to a unit of a chemical component in a sample to form a first multi-indicator complex. The first multi-indicator complex includes the unit of the chemical component, the indicator of the first type, and the indicator of the second type. The indicator of the first type and the indicator of the second type have different discernible characteristics. An image of the sample, including the first multi-indicator complex corresponding to the unit of the chemical component, is captured by an image sensor. Based on a first image of the sample, a count is generated of multi-indicator complexes that include an indicator of the first type and an indicator of the second type, including the first multi-indicator complex. Based on the count, a presence or a level of the chemical component in the sample is identified.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventor: Alan Marc Fine
  • Publication number: 20210278647
    Abstract: A base assembly includes an imaging sensor having a sensor surface to receive a sample, and a platform connected to the base assembly. The base assembly includes (a) an aperture configured to receive a lid surface of a lid in a position to define an imaging space between the sensor surface and the lid surface and (b) a movement portion movable toward and away from the base assembly. The platform and the base assembly are configured to limit contact between the sample and the base assembly other than at the sensor surface.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 9, 2021
    Inventors: Alan Marc Fine, Joel Ironstone, Christopher Gillespie
  • Patent number: 11112347
    Abstract: Among other things, an imaging sensor includes a two-dimensional array of photosensitive elements and a surface to receive a sample within a near-field distance of the photosensitive elements. Electronics classify microbeads in the sample as belonging to different classes based on the effects of different absorption spectra of the different classes of microbeads on light received at the surface. In some examples, the number of different distinguishable classes of microbeads can be very large based on combinations of the effects on light received at the surface of the different absorption spectra together, spatial arrangements of colorants in the microbeads that impart the different absorption spectra, different sizes of microbeads, and different shapes of microbeads, among other things.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: September 7, 2021
    Inventor: Alan Marc Fine
  • Patent number: 11112593
    Abstract: In some instances, an apparatus can include a light sensitive imaging sensor having a surface to receive a fluid sample, a body to be moved relative to the light sensitive imaging sensor and having a surface to touch a portion of the fluid sample, and a carrier to move the body toward the surface of the light sensitive imaging sensor to cause the surface of the body to touch the portion of the fluid sample, so that as the surface of the body touches the portion of the fluid, the surface of the body (i) is parallel to the surface of the light sensitive imaging sensor, and (ii) settles on top of the fluid sample independently of motion of the carrier.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: September 7, 2021
    Inventor: Alan Marc Fine
  • Patent number: 11099181
    Abstract: Among other things, two or more different antibodies are caused to bind to one or more units of a chemical component in a sample. Each of the antibodies is attached to one or more beads (e.g., microbeads). The sample is situated on a surface of an image sensor. At the image sensor, light is received originating at a light source that is other than the beads. The received light includes light reflected by, refracted by, or transmitted through the beads. At least one image of the sample is processed to separately enumerate individual beads and complexes of two or more of the beads attached to the two or more antibodies that are bound to a unit of the chemical component. The results of the processing are used to identify a presence or a level of the chemical component in the sample.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: August 24, 2021
    Inventor: Alan Marc Fine
  • Patent number: 11061031
    Abstract: Among other things, a method comprises imaging a sample displaced between a sensor surface and a surface of a microscopy sample chamber to produce an image of at least a part of the sample. The image is produced using lensless optical microscopy, and the sample contains at least blood from a subject. The method also comprises automatically differentiating cells of different types in the image, generating a count of one or more cell types based on the automatic differentiation, and deriving a radiation dose the subject has absorbed based on the count.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: July 13, 2021
    Inventor: Alan Marc Fine
  • Patent number: 10991744
    Abstract: Among other things, an integral image sensor includes a sensor surface having a surface area at which light-sensitive pixels are arranged in rows and columns. The surface area includes two or more light-sensitive subareas each of the subareas having been configured to have been diced from a wafer along two orthogonal dimensions to form a discrete image sensor. The two or more light-sensitive subareas are arranged along one of the two orthogonal dimensions. The sensor surface of the integral image sensor is flat and continuous across the two or more subareas.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: April 27, 2021
    Inventors: Alan Marc Fine, Madhuranga Srinath Rankaduwa
  • Publication number: 20210116475
    Abstract: Among other things, an imaging device has a photosensitive array of pixels, and a surface associated with the array is configured to receive a specimen with at least a part of the specimen at a distance from the surface equivalent to less than about half of an average width of the pixels.
    Type: Application
    Filed: November 24, 2020
    Publication date: April 22, 2021
    Inventor: Alan Marc Fine
  • Publication number: 20210066377
    Abstract: Among other things, an integral image sensor includes a sensor surface having a surface area at which light-sensitive pixels are arranged in rows and columns. The surface area includes two or more light-sensitive subareas each of the subareas having been configured to have been diced from a wafer along two orthogonal dimensions to form a discrete image sensor. The two or more light-sensitive subareas are arranged along one of the two orthogonal dimensions. The sensor surface of the integral image sensor is flat and continuous across the two or more subareas.
    Type: Application
    Filed: October 14, 2020
    Publication date: March 4, 2021
    Inventors: Alan Marc Fine, Madhuranga Srinath Rankaduwa
  • Publication number: 20210063713
    Abstract: Among other things, an imaging device has a photosensitive array of pixels, and a surface associated with the array is configured to receive a specimen with at least a part of the specimen at a distance from the surface equivalent to less than about half of an average width of the pixels.
    Type: Application
    Filed: October 30, 2020
    Publication date: March 4, 2021
    Inventors: Alan Marc Fine, Peter Hodges Gregson
  • Patent number: 10900999
    Abstract: Among other things, an imaging device has a photosensitive array of pixels, and a surface associated with the array is configured to receive a specimen with at least a part of the specimen at a distance from the surface equivalent to less than about half of an average width of the pixels.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: January 26, 2021
    Inventor: Alan Marc Fine
  • Publication number: 20200400549
    Abstract: Among other things, an imaging sensor includes a two-dimensional array of photosensitive elements and a surface to receive a sample within a near-field distance of the photosensitive elements. Electronics classify microbeads in the sample as belonging to different classes based on the effects of different absorption spectra of the different classes of microbeads on light received at the surface. In some examples, the number of different distinguishable classes of microbeads can be very large based on combinations of the effects on light received at the surface of the different absorption spectra together, spatial arrangements of colorants in the microbeads that impart the different absorption spectra, different sizes of microbeads, and different shapes of microbeads, among other things.
    Type: Application
    Filed: June 1, 2020
    Publication date: December 24, 2020
    Inventor: Alan Marc Fine
  • Patent number: 10866395
    Abstract: Among other things, an imaging device has a photosensitive array of pixels, and a surface associated with the array is configured to receive a specimen with at least a part of the specimen at a distance from the surface equivalent to less than about half of an average width of the pixels.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: December 15, 2020
    Inventors: Alan Marc Fine, Peter Hodges Gregson
  • Publication number: 20200379234
    Abstract: Among other things, a first surface is configured to receive a sample and is to be used in a microscopy device. There is a second surface to be moved into a predefined position relative to the first surface to form a sample space that is between the first surface and the second surface and contains at least part of the sample. There is a mechanism configured to move the second surface from an initial position into the predefined position to form the sample space. When the sample is in place on the first surface, the motion of the second surface includes a trajectory that is not solely a linear motion of the second surface towards the first surface.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Alan Marc Fine, Hershel Macaulay, Noah Hymes-Vandermeulen
  • Publication number: 20200371004
    Abstract: Among other things, a diluted sample is generated based on mixing a small sample of blood with a one or more diluents. A thin film of the diluted sample is formed on the surface of a contact optical microscopy sensor. Red blood cells within a portion of the thin film of the diluted sample are illuminated using light of a predetermined wavelength. One or more images of the diluted sample are acquired based on illuminating the red blood cells within the portion of the thin film of the diluted sample. The acquired one or more images of the diluted sample are then processed. The mean corpuscular hemoglobin in the red blood cells within the portion of the thin film of the diluted sample is determined based on processing the acquired images of the diluted sample.
    Type: Application
    Filed: August 14, 2020
    Publication date: November 26, 2020
    Inventors: Alan Marc Fine, Hershel Macaulay
  • Patent number: 10840286
    Abstract: Among other things, an integral image sensor includes a sensor surface having a surface area at which light-sensitive pixels are arranged in rows and columns. The surface area includes two or more light-sensitive subareas each of the subareas having been configured to have been diced from a wafer along two orthogonal dimensions to form a discrete image sensor. The two or more light-sensitive subareas are arranged along one of the two orthogonal dimensions. The sensor surface of the integral image sensor is flat and continuous across the two or more subareas.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: November 17, 2020
    Assignee: Alentic Microscience Inc.
    Inventors: Alan Marc Fine, Madhuranga Srinath Rankaduwa
  • Patent number: 10809512
    Abstract: Among other things, a first surface is configured to receive a sample and is to be used in a microscopy device. There is a second surface to be moved into a predefined position relative to the first surface to form a sample space that is between the first surface and the second surface and contains at least part of the sample. There is a mechanism configured to move the second surface from an initial position into the predefined position to form the sample space. When the sample is in place on the first surface, the motion of the second surface includes a trajectory that is not solely a linear motion of the second surface towards the first surface.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: October 20, 2020
    Assignee: Alentic Microscience Inc.
    Inventors: Alan Marc Fine, Hershel Macaulay, Noah Hymes-Vandermeulen