Patents by Inventor Marc Stein

Marc Stein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140277542
    Abstract: A system and method is disclosed herein for measuring bone slope or tilt of a prepared bone surface of the muscular-skeletal system. The system comprises a three-axis accelerometer for measuring position, rotation, and tilt. In one embodiment, the three-axis accelerometer can be housed in a prosthetic component that couples to a prepared bone surface. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from one or more sensors. A bone is placed in extension. The three-axis accelerometer is referenced to a bone landmark of the bone when the bone is in extension. The three-axis accelerometer is then coupled to the prepared bone surface with the bone in extension. The slope or tilt of the bone surface is measured. In the example, the slope or tilt of the bone surface corresponds to at least one surface of the prosthetic component attached thereto.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 18, 2014
    Applicant: Orthosensor Inc
    Inventors: Marc Stein, Martin Roche
  • Publication number: 20140277526
    Abstract: A system is disclosed herein for providing a kinetic assessment and preparation of a prosthetic joint comprising one or more prosthetic components. The system comprises a prosthetic component including sensors and circuitry configured to measure load, position of load, and joint alignment. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from the sensors. The kinetic assessment measures joint alignment under loading that will be similar to that of a final joint installation. The kinetic assessment can use trial or permanent prosthetic components. Furthermore, adjustments can be made to the applied load magnitude, position of load, and joint alignment by various means to fine-tune an installation. The kinetic assessment increases both performance and reliability of the installed joint by reducing error that is introduced by elements that load or modify the joint dynamics not taken into account by prior assessment methods.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 18, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Martin Roche
  • Publication number: 20140276863
    Abstract: A knee bone cut system and method is disclosed. The knee bone cut system supports cutting an anterior portion of a distal end of a femur. The system comprises a sensored insert, a femoral rotation guide, and a remote system to receive and display sensor data. The sensored insert provide data related to load magnitude, position of load, and leg position. The femoral rotation guide has moveable condyles to adjust condyle position in a rapid manner. A pinch mechanism and lock mechanism respectively move the condyles into contact with the sensored insert. Moreover, the femoral rotation guide can be loaded similar to a final installed insert over a range of motion. For example, the patella can be placed on the femoral rotation guide allowing the patella to load the sensored insert. The femoral insert guide includes guide holes that are used in conjunction with a bone cutting jig.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 18, 2014
    Applicant: Orthosensor Inc.
    Inventors: Marc Stein, Martin Roche
  • Publication number: 20140275815
    Abstract: An orthopedic implant having a three-axis accelerometer is disclosed. The three-axis accelerometer is used to detect micro-motion in the implant. The micro-motion can be due to loosening of the implant. The implant is configured to couple to the muscular-skeletal system. In one embodiment, the implant is configured to couple to bone. An impact force is imparted to the bone or implant. The impact force can be provided via a transducer coupled to the implant. In the example, the impact force is imparted along a single axis. The three-axis accelerometer measures the impact force along each axis. Resultant peaks of the quantitative measurement and the frequencies at which they occur are measured. The peaks and frequencies of the measurements correspond to micro-motion. Typically, the frequency of interest is less than 1 KHz to determine if micro-motion is occurring.
    Type: Application
    Filed: June 3, 2014
    Publication date: September 18, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Yoong-Joong Kim, Matthew J. Cohen, Chelsea A. Liddell
  • Publication number: 20140276885
    Abstract: A system and method is disclosed herein for measuring alignment of the muscular-skeletal system. The system comprises a sensored module that can be placed within a prosthetic component to measure load, position of load, and joint alignment. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from the sensors. Alignment relative to a mechanical axis is measured. In a two bone system with a joint therebetween the total alignment measured comprises offsets measured for each bone. The joint is placed in a predetermined flexion that supports measurement of the joint as it is moved. The joint pivots on a point that is along the mechanical axis. Points along the arc made by the joint rotating between a first and second point are measured. An arc maximum is determined. The arc maximum is then converted to varus or valgus offset relative to the mechanical axis.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 18, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Martin Roche
  • Publication number: 20140276886
    Abstract: An alignment system for the muscular-skeletal system is disclosed. The system supports parameter measurement and alignment. The system comprises a sensored device, a reference position tool, and a remote system configured to receive and display sensor data. The sensored device includes a three-axis accelerometer configured to measure position, rotation, and slope. The reference position tool comprises a body, a first arm coupled to a proximal end of the body, and a second arms coupled to a proximal end of the body. The sensored device couples to the reference position tool. The first and second arms of the reference position tool couples to the muscular-skeletal system in predetermined locations to allow a position of the muscular-skeletal system to be referenced. The body of the reference position tool can extend and retract to adapt to different sized muscular-skeletal systems.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 18, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Martin Roche
  • Publication number: 20140276862
    Abstract: A bone cutting system is disclosed that supports one or more bone cuts that are aligned relative to a mechanical axis. The system comprises a first bone cutting jig, a second bone cutting jig, a sensored insert, a bone jig adapter shim, and a device having at least two reference surfaces. The sensored insert includes a three-axis accelerometer to measure position, rotation, and tilt and includes a plurality of sensors to measure a parameter of the muscular-skeletal system. The reference surface device can be an operating table having a first reference surface and a second reference surface that is perpendicular to the first reference surface for referencing the three-axis accelerometer. The bone jig adapter shim can include a tab that fits into a slot of the first or second bone cutting jigs. A remote system receives accelerometer data to calculate offset relative to a mechanical axis.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 18, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Martin Roche
  • Publication number: 20140276860
    Abstract: A system and method is disclosed herein for measuring anterior-posterior slope of a bone to set a cutting jig coupled to the muscular-skeletal system. The system comprises a sensored module that can be placed within a prosthetic component to measure anterior-posterior slope. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from the sensors. A first bone and a second bone are placed in extension. A sensored module is referenced to a bone landmark of the first bone. The sensored module includes a three-axis accelerometer that is configured to measure position, tilt, and rotation. A bone cutting jig is coupled to the first bone. The sensored insert is coupled to the bone cutting jig. The accelerometer in the sensored insert is used to measure the anterior-posterior slope. The bone cutting jig is then adjusted to a predetermined anterior-posterior slope as measured by the sensored insert.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 18, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Martin Roche
  • Patent number: 8826733
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component includes electronic circuitry and sensors to measure a parameter of the muscular-skeletal system. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. Sensors can be used to monitor synovial fluid in proximity to the joint to determine joint health. The prosthetic component can include a temperature sensor or a pH sensor. The temperature or pH of the synovial fluid can be correlated to a variety of joint conditions. Measurements over time can be analyzed for trends. The temperature or pH can be calibrated for the patient. For example, calibration can be for temperature or pH of a patient healthy joint. The measurements are compared against this patient reference.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Orthosensor Inc
    Inventors: Marc Stein, Andrew Chase, John Keggi, Noah Bonnheim, Natalie Burkhard, Philip Henson
  • Publication number: 20140206952
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component includes electronic circuitry and sensors to measure a parameter of the muscular-skeletal system. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. The prosthetic component includes at least on transmissive region. The transmissive region can be located in a region that has exposure to a region outside the joint. The transmissive region can comprise glass. One or more sensors can be used to monitor synovial fluid in proximity to the joint to determine joint health. The transmissive region can be used to support communication between the electronic circuitry and remote system.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 24, 2014
    Applicant: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase, John Keggi, Noah Bonnheim, Natalie Burkhard, Philip Henson
  • Patent number: 8784339
    Abstract: A spinal instrument includes sensors for measuring a parameter of the muscular-skeletal system. The spinal instrument includes a sensored head region that can be inserted into a spinal region. The spinal instrument comprises a housing, a housing, an electronic assembly, and a flexible interconnect. Housing includes a handle portion, a shaft portion, and a support structure. Similarly, housing includes a handle portion, a shaft portion, and a support structure. Furthermore, housing has a cavity and a lengthwise passage respectively for receiving electronic assembly and flexible interconnect. A sensored head region of spinal instrument includes an assembly stack for measuring load magnitude and position of load on the support structure and the support structure. The flexible interconnect couples the electronic assembly to the sensors.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 22, 2014
    Assignee: Orthosensor Inc
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20140200584
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device. The capacitor is shielded from parasitic coupling and parasitic capacitance.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 17, 2014
    Applicant: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase
  • Patent number: 8777877
    Abstract: A spine measurement system includes at least one spinal instrument and a remote system. The spinal instrument comprises a handle, a shaft, an accelerometer, a sensored head, and an electronic assembly. The sensored head includes one or more sensors that are operatively coupled to the electronic assembly. The sensored head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI of remote system can report position via the accelerometer to show spinal instrument relative to vertebral bodies as the instrument is placed in the inter-vertebral space. The system can report optimal prosthetic size and placement in view of the sensed load and location parameters including optional orientation, rotation and insertion angle along a determined insert trajectory.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 15, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20140194707
    Abstract: An orthopedic system to monitor a parameter related to the muscular-skeletal system is disclosed. The orthopedic system includes electronic circuitry, a sensor, and a remote system to monitor and measure. The sensor is configured to measure color or turbidity. The electronic circuitry is coupled to and interfaces with the sensor. The electronic circuit includes a transmitter to transmit measurement data from the sensor to the remote system. The orthopedic system is configured to monitor color or turbidity of a fluid in proximity to the muscular-skeletal system. The orthopedic system can transmit a signal when a predetermined color is detected or when the turbidity of the fluid exceeds a predetermined value. Alternatively, the remote system includes a processor and software configured to analyze the measurement data from the sensor and transmit a signal when a predetermined color is detected or when the turbidity of the fluid exceeds a predetermined value.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Andrew Chase, John Keggi, Noah Bonnheim, Natalie Burkhard, Philip Henson
  • Publication number: 20140188117
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device. The capacitor is shielded from parasitic coupling and parasitic capacitance.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20140188007
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.
    Type: Application
    Filed: March 5, 2014
    Publication date: July 3, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Andrew Chase
  • Publication number: 20140171754
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component includes electronic circuitry and sensors to measure a parameter of the muscular-skeletal system. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. Sensors can be used to monitor synovial fluid in proximity to the joint to determine joint health. The prosthetic component can include a temperature sensor, a pH sensor, and an optical sensor. The temperature, pH, color, and turbidity of the synovial fluid can be correlated to a variety of joint conditions. Measurements over time can be analyzed for trends. The temperature, pH, color, and tubidity can be calibrated for the patient. The measurements are compared against this patient reference.
    Type: Application
    Filed: February 17, 2014
    Publication date: June 19, 2014
    Applicant: Orthosensor Inc.
    Inventors: Marc Stein, Andrew Chase, John Keggi, Noah Bonnheim, Natalie Burkhard, Philip Henson
  • Patent number: 8746062
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew U. Chase
  • Publication number: 20140148676
    Abstract: A dual-mode closed-loop measurement system for capturing a transit time, phase, or frequency of energy waves propagating through a medium is disclosed. A first module comprises an inductor drive circuit, an inductor, a transducer, and a filter. A second module housed in a screw comprises an inductor and a transducer. The screw is bio-compatible and allows an accurate delivery of the circuit into the muscular-skeletal system. The inductor can be attached and interconnected on a flexible substrate that fits into a cavity in the screw. The first and second modules are operatively coupled together. The first module provides energy to power the second module. The second module emits an energy wave into the medium that propagates to the first module. The transit time of energy waves is measured and correlated to the parameter by known relationship.
    Type: Application
    Filed: February 4, 2014
    Publication date: May 29, 2014
    Applicant: ORTHOSENSOR INC.
    Inventors: Marc Stein, Martin Roche
  • Publication number: 20140135744
    Abstract: At least one embodiment is directed to a tracking system for the muscular-skeletal system. The tracking system can identify position and orientation. The tracking system can be attached to a device or integrated into a device. In one embodiment, the tracking system couples to a handheld tool. The handheld tool with the tracking system and one or more sensors can be used to generate tracking data of the tool location and trajectory while measuring parameters of the muscular-skeletal system at an identified location. The tracking system can be used in conjunction with a second tool to guide the second tool to the identified location of the first tool. The tracking system can guide the second tool along the same trajectory as the first tool. For example, the second tool can be used to install a prosthetic component at a predetermined location and a predetermined orientation. The tracking system can track hand movements of a surgeon holding the handheld tool within 1 millimeter over a path less than 5 meters.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: ORTHOSENSOR INC
    Inventors: Marc Stein, Glen Vaughn