Patents by Inventor Marc Unger

Marc Unger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150159132
    Abstract: This invention provides technology for transdifferentiating cells from one cell type to another. The cells are cultured with one or more vector-free gene regulator oligonucleotides concurrently or in succession, and then harvested when cell markers or the morphology of the culture shows that transdifferentiation is complete. Suitable gene regular oligonucleotides include microRNAs and messenger RNAs that encode a differentiation factor. Conditions for transdifferentiation can be optimized by dividing cells into different culture chambers of a microfluidic device. Cells are cultured with different additives in each chamber, and then compared. Transdifferentiated cells produced according to this invention can provide a consistent source of tissue for use in regenerative medicine.
    Type: Application
    Filed: December 12, 2014
    Publication date: June 11, 2015
    Inventors: NIANZHEN LI, Marc Unger
  • Publication number: 20140357513
    Abstract: The invention provides an assay method for detection and/or quantification of a plurality of nucleic acid or protein targets in a sample. In the method probes are used to associate a detectable tag sequence with each of the selected targets present in the sample. Probes or primers sufficient to identify at least 25, and preferably at least 500, different targets are used. The method involves segregating aliquots of the sample from each other and detecting the tag sequences in each aliquot.
    Type: Application
    Filed: July 14, 2014
    Publication date: December 4, 2014
    Inventors: Michael Lucero, Marc Unger
  • Publication number: 20140318633
    Abstract: Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
    Type: Application
    Filed: November 27, 2013
    Publication date: October 30, 2014
    Applicant: Fluidigm Corporation
    Inventors: Geoffrey Facer, Brian Fowler, Emerson Cheung Quan, Marc Unger
  • Publication number: 20140296090
    Abstract: The present invention provides assay methods that increase the number of samples and/or target nucleic acids that can be analyzed in a single assay.
    Type: Application
    Filed: February 19, 2014
    Publication date: October 2, 2014
    Applicant: FLUIDIGM CORPORATION
    Inventors: Alain Mir, Ramesh Ramakrishnan, Marc Unger, Bernhard G. Zimmermann
  • Patent number: 8845914
    Abstract: The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: September 30, 2014
    Assignee: Fluidigm Corporation
    Inventors: Hany Nassef, Geoffrey Richard Facer, Marc Unger
  • Patent number: 8828663
    Abstract: Devices and methods for performing the relative concentration of a target in a sample, the sample containing both target and non-target components, the method performed by partitioning the sample into a large number of reaction volumes such that the target is concentrated relative to the non-target, and performing a detection assay upon each reaction volume to detect the target.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: September 9, 2014
    Assignees: Fluidigm Corporation, The Regents of the University of California
    Inventors: Marc Unger, Lincoln McBride, Geoffrey Facer, Michael Lucero, Hany Ramez Nassef
  • Patent number: 8828661
    Abstract: The invention provides an assay method for detection and/or quantification of a plurality of nucleic acid or protein targets in a sample. In the method probes are used to associate a detectable tag sequence with each of the selected targets present in the sample. Probes or primers sufficient to identify at least 25, and preferably at least 500, different targets are used. The method involves segregating aliquots of the sample from each other and detecting the tag sequences in each aliquot.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: September 9, 2014
    Assignee: Fluidigm Corporation
    Inventors: Michael Lucero, Marc Unger
  • Patent number: 8697363
    Abstract: The present invention provides assay methods that increase the number of samples and/or target nucleic acids that can be analyzed in a single assay. In certain embodiments, an assay method entails separately subjecting S samples to an encoding reaction that produces a set of T tagged target nucleotide sequences, each tagged target nucleotide sequence including a sample-specific nucleotide tag and a target nucleotide sequence. In some embodiments, an assay method entails separately subjecting S samples to an encoding reaction that produces a set of T tagged target nucleotide sequences, each tagged target nucleotide sequence including a first nucleotide tag linked to a target nucleotide sequence, which is linked to a second nucleotide tag. In either case, the tagged target nucleotide sequences from the S samples can be mixed to form an assay mixture and subsequently assayed.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: April 15, 2014
    Assignee: Fluidigm Corporation
    Inventors: Alain Mir, Ramesh Ramakrishnan, Marc Unger, Bernhard G. Zimmermann
  • Patent number: 8616227
    Abstract: Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: December 31, 2013
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Facer, Brian Fowler, Emerson Cheung Quan, Marc Unger
  • Publication number: 20130337457
    Abstract: Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
    Type: Application
    Filed: June 3, 2013
    Publication date: December 19, 2013
    Applicant: Fluidigm Corporation
    Inventors: Geoffrey Facer, Brian Fowler, Emerson Cheung Quan, Marc Unger
  • Publication number: 20130302785
    Abstract: The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
    Type: Application
    Filed: April 22, 2013
    Publication date: November 14, 2013
    Inventors: Hany Nassef, Geoffrey Facer, Marc Unger
  • Publication number: 20130252234
    Abstract: The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 26, 2013
    Applicant: Fluidigm Corporation
    Inventors: Hany Nassef, Greoffrey Facer, Marc Unger
  • Publication number: 20130171633
    Abstract: An M×N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.
    Type: Application
    Filed: July 12, 2012
    Publication date: July 4, 2013
    Applicant: Fluidigm Corporation
    Inventors: Lincoln McBride, Geoffrey Facer, Marc Unger, Michael Lucero, Hany Ramez Nassef
  • Patent number: 8475743
    Abstract: Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: July 2, 2013
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Facer, Brian Fowler, Emerson Cheung Quan, Marc Unger
  • Patent number: 8440093
    Abstract: The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: May 14, 2013
    Assignee: Fuidigm Corporation
    Inventors: Hany Nassef, Geoff Facer, Marc Unger
  • Publication number: 20130065773
    Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
    Type: Application
    Filed: April 4, 2012
    Publication date: March 14, 2013
    Applicant: Fluidigm Corporation
    Inventors: Marc Unger, Ian D. Manger, Michael Lucero, Yong Yi, Emily Miyashita-Lin, Anja Wienecke, Geoffrey Facer
  • Patent number: 8343442
    Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: January 1, 2013
    Assignee: Fluidigm Corporation
    Inventors: Lincoln McBride, Michael Lucero, Marc Unger, Hany Ramez Nassef, Geoffrey Facer
  • Patent number: 8247178
    Abstract: An M×N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 21, 2012
    Assignee: Fluidigm Corporation
    Inventors: Lincoln McBride, Geoffrey Facer, Marc Unger, Michael Lucero, Hany Ramez Nassef
  • Patent number: 8163492
    Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: April 24, 2012
    Assignee: Fluidign Corporation
    Inventors: Marc Unger, Ian D. Manger, Michael Lucero, Yong Yi, Emily Miyashita-Lin, Anja Wienecke, Geoffrey Facer
  • Patent number: 8104497
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: January 31, 2012
    Assignee: California Institute of Technology
    Inventors: Marc Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen Quake, Markus Enzelberger, Mark Adams, Carl Hansen