Patents by Inventor Marc Unger
Marc Unger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20090142236Abstract: An M.times.N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.Type: ApplicationFiled: October 30, 2007Publication date: June 4, 2009Applicant: Fluidigm CorporationInventors: Marc Unger, Jiang Huang, Emerson Quan
-
Publication number: 20090061428Abstract: An M times.N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.Type: ApplicationFiled: October 30, 2007Publication date: March 5, 2009Applicant: Fluidigm CorporationInventors: Lincoln McBride, Geoffrey Facer, Marc Unger
-
Patent number: 7476363Abstract: An M×N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.Type: GrantFiled: May 2, 2004Date of Patent: January 13, 2009Assignee: Fluidigm CorporationInventors: Marc Unger, Jiang Huang, Emerson Quan
-
Publication number: 20080292504Abstract: An M.times.N matrix microfluidic device for performing a matrix of reactions, the device having a plurality of reaction cells in communication with one of either a sample inlet or a reagent inlet through a via formed within an elastomeric block of the device. Methods provided include a method for forming vias in parallel in an elastomeric layer of an elastomeric block of a microfluidic device, the method comprising using patterned photoresist masks and etching reagents to etch away regions or portions of an elastomeric layer of the elastomeric block.Type: ApplicationFiled: October 30, 2007Publication date: November 27, 2008Applicant: Fluigm CorporationInventors: Federico Goodsaid, Marc Unger, Jiang Huang, Emerson Quan
-
Publication number: 20080230387Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.Type: ApplicationFiled: October 30, 2007Publication date: September 25, 2008Applicant: Fluidigm CorporationInventors: Lincoln McBride, Marc Unger, Michael Lucero, Hany Ramez Nassef, Geoffrey Facer
-
Publication number: 20080108063Abstract: The invention provides an assay method for detection and/or quantification of a plurality of nucleic acid or protein targets in a sample. In the method probes are used to associate a detectable tag sequence with each of the selected targets present in the sample. Probes or primers sufficient to identify at least 25, and preferably at least 500, different targets are used. The method involves segregating aliquots of the sample from each other and detecting the tag sequences in each aliquot.Type: ApplicationFiled: April 24, 2007Publication date: May 8, 2008Applicant: Fluidigm CorporationInventors: Michael Lucero, Marc Unger
-
Publication number: 20080088952Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.Type: ApplicationFiled: December 10, 2007Publication date: April 17, 2008Applicant: Fluidigm CorporationInventors: Marc Unger, Geoffrey Facer, Barry Clerkson, Christopher Cesar, Neil Switz
-
Patent number: 7291512Abstract: A valve structure comprises an elastomeric block formed with first and second microfabricated recesses separated by a membrane portion of the elastomeric block. The valve is actuated by positioning a compliant electrode on a first side of the first recess proximate to and in physical communication with the membrane. Where the valve is to be electrostatically actuated, a second electrode is positioned on a second side of the first recess opposite the first side. Application of a potential difference across the electrodes causes the compliant electrode and the membrane to be attracted into the flow channel. Where the valve is to be electrostrictively actuated, a second electrode is positioned on the same side of the recess as the compliant electrode. Application of a potential difference across the electrodes causes the electrodes to be attracted such that elastomer membrane portion material between them is compressed and bows into the flow channel.Type: GrantFiled: December 21, 2005Date of Patent: November 6, 2007Assignee: Fluidigm CorporationInventor: Marc Unger
-
Publication number: 20070196912Abstract: Methods and systems are provided for conducting a reaction at a selected temperature or range of temperatures over time. An array device is provided. The array device contains separate reaction chambers and is formed as an elastomeric block from multiple layers. At least one layer has at least one recess that recess has at least one deflectable membrane integral to the layer with the recess. The array device has a thermal transfer device proximal to at least one of the reaction chambers. The thermal transfer device is formed to contact a thermal control source. Reagents for carrying out a desired reaction are introduced into the array device. The array device is contacted with a thermal control device such that the thermal control device is in thermal communication with the thermal control source so that a temperature of the reaction in at least one of the reaction chamber is changed as a result of a change in temperature of the thermal control source.Type: ApplicationFiled: April 26, 2007Publication date: August 23, 2007Applicant: Fluidigm CorporationInventors: Geoffrey Facer, Robert Grossman, Marc Unger, Philip Lam, Hou-Pu Chou, Jake Kimball, Martin Pieprzyk, Antoine Daridon
-
Patent number: 7216671Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: GrantFiled: February 10, 2005Date of Patent: May 15, 2007Assignee: California Institute of TechnologyInventors: Marc Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen Quake, Markus Enzelberger, Mark Adams, Carl Hansen
-
Publication number: 20070059494Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: ApplicationFiled: October 25, 2006Publication date: March 15, 2007Applicant: California Institute of TechnologyInventors: Marc Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen Quake
-
Publication number: 20070004031Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.Type: ApplicationFiled: September 12, 2006Publication date: January 4, 2007Applicant: Fluidigm CorporationInventors: Marc Unger, Ian Manger, Michael Lucero, Yong Yi, Emily Miyashita-Lin, Anja Wienecke, Geoffrey Facer
-
Publication number: 20070004033Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.Type: ApplicationFiled: September 12, 2006Publication date: January 4, 2007Applicant: Fluidigm CorporationInventors: Marc Unger, Ian Manger, Michael Lucero, Yong Yi, Emily Miyashita-Lin, Anja Wienecke, Geoffrey Facer
-
Patent number: 7118910Abstract: A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.Type: GrantFiled: November 27, 2002Date of Patent: October 10, 2006Assignee: Fluidigm CorporationInventors: Marc Unger, Ian D. Manger, Michael Lucero, Yong Yi, Emily Miyashita-Lin, Anja Weinecke, Geoffrey Facer
-
Patent number: 7075162Abstract: A valve structure includes an elastomeric block formed with first and second microfabricated recesses separated by a membrane portion of the elastomeric block. The valve is actuated by positioning a compliant electrode on a first side of the first recess proximate to and in physical communication with the membrane. Where the valve is to be electrostatically actuated, a second electrode is positioned on a second side of the first recess opposite the first side. Application of a potential difference across the electrodes causes the compliant electrode and the membrane to be attracted into the flow channel. Where the valve is to be electrostrictively actuated, a second electrode is positioned on the same side of the recess as the compliant electrode. Application of a potential difference across the electrodes causes the electrodes to be attracted such that elastomer membrane portion material between them is compressed and bows into the flow channel.Type: GrantFiled: August 29, 2002Date of Patent: July 11, 2006Assignee: Fluidigm CorporationInventor: Marc Unger
-
Publication number: 20060118895Abstract: A valve structure comprises an elastomeric block formed with first and second microfabricated recesses separated by a membrane portion of the elastomeric block. The valve is actuated by positioning a compliant electrode on a first side of the first recess proximate to and in physical communication with the membrane. Where the valve is to be electrostatically actuated, a second electrode is positioned on a second side of the first recess opposite the first side. Application of a potential difference across the electrodes causes the compliant electrode and the membrane to be attracted into the flow channel. Where the valve is to be electrostrictively actuated, a second electrode is positioned on the same side of the recess as the compliant electrode. Application of a potential difference across the electrodes causes the electrodes to be attracted such that elastomer membrane portion material between them is compressed and bows into the flow channel.Type: ApplicationFiled: December 21, 2005Publication date: June 8, 2006Applicant: Fluidigm CorporationInventor: Marc Unger
-
Publication number: 20060099116Abstract: This invention provides microfluidic devices and methods for using the same. Microfluidic devices of the present invention comprises a first elastic layer, a fluid flow channel within the elastic layer; and a means for providing a fluid sample from the fluid flow channel to an analytical device. The present invention also provides an analytical apparatus comprising such a microfluidic device and an analytical device.Type: ApplicationFiled: December 13, 2005Publication date: May 11, 2006Applicant: Mycometrix CorporationInventors: Ian Manger, Cunsheng Hao, Marc Unger
-
Publication number: 20060093836Abstract: The present invention is directed to a surface modified polymer comprising a surface which is covalently bonded to a surface modifying compound. Formation of the covalent bond between the polymer and the surface modifying compound is achieved by a reaction between an intrinsic functional group that is present in the polymer and the functional group of the surface modifying compound. By using a polymer having an intrinsic functional group, a separate surface activation step is avoided.Type: ApplicationFiled: December 14, 2005Publication date: May 4, 2006Applicant: Fluidigm CorporationInventors: Jiang Huang, Shoujun Xiao, Marc Unger
-
Publication number: 20060054228Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: ApplicationFiled: April 20, 2005Publication date: March 16, 2006Applicant: California Institute of TechnologyInventors: Marc Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen Quake, Jian Liu, Mark Adams, Carl Hansen
-
Publication number: 20060006067Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.Type: ApplicationFiled: June 7, 2005Publication date: January 12, 2006Applicant: Fluidigm CorporationInventor: Marc Unger